& ChatGPT

Cours de développement Android avec Kotlin &
Jetpack Compose (débutant)

Bienvenue dans ce cours accéléré qui vous apprendra les bases du développement d'une application
Android en Kotlin en utilisant Jetpack Compose. Lobjectif est de vous fournir en 3 heures les
connaissances nécessaires pour coder une application simple (par exemple pour un examen). Nous
aborderons pas a pas les concepts essentiels : de la syntaxe Kotlin aux composants d'interface
Compose, en passant par la navigation multi-écrans, la gestion d'état, l'utilisation d'un ViewModel, la
création de formulaires, les listes dynamiques et méme une introduction au stockage local avec Room.
Chaque section inclut des explications pédagogiques pour débutants, des extraits de code commentés,
des illustrations de linterface attendue et des conseils pour réussir rapidement lors d'un projet
d’examen.

1. Introduction a Kotlin (variables, fonctions, classes, collections)

Kotlin en bref : Kotlin est un langage moderne et concis, officiellement supporté par Google pour
Android. Il est statiquement typé (les types sont vérifiés a la compilation) et 100% interopérable avec
Java 1 . Kotlin est orienté objet et fonctionnel, ce qui le rend multi-paradigme. Pour nos besoins, nous
allons nous concentrer sur les bases de sa syntaxe.

Variables: var vs val

En Kotlin, on déclare une variable avec les mots-clés var ou val . La différence est cruciale :

- var | définit une variable mutable, dont la valeur peut étre modifiée aprés l'initialisation 2 3 . Clest
I'équivalent d’'une variable normale en Java. Par exemple : | var compteur: Int = 10| déclare un
entier modifiable initialisé a 10, et on pourrait plus tard faire compteur = 15| 3 .

- val définit une variable immutable, qu'on ne peut pas réassigner une fois initialisée (semblable a
un | final enjava) 4 5 .Sion tente de changer sa valeur, le compilateur produira une erreur. Par
exemple: val langue: String = "Kotlin" crée une constante quivaudra toujours "Kotlin" 6 .

En résumé, utilisez | val | par défaut pour toutes les valeurs qui ne devraient pas changer, et var pour
les variables dont le contenu doit évoluer. Cela évite des bugs et clarifie I'intention du code & . Conseil
examen : ne vous trompez pas entre val et var . Si une variable ne doit pas étre modifiée, utilisez
val - le compilateur vous aidera ainsi a attraper les réassignations non souhaitées.

Types de base et inférence de type

Kotlin gére la plupart des types de base similaires a Java : | Int , Long| Double | String)| etc. Il
supporte linférence de type, ce qui signifie que vous pouvez souvent omettre le type lors de la
déclaration si la valeur initiale est évidente. Par exemple, val compteur = 10 suffit pour que Kotlin
comprenne que c'est un | Int |. Le langage étant statiquement typé, le type d'une variable est figé a la
compilation et ne changera pas ; cela sécurise votre code 7 .

Kotlin introduit aussi la null-safety (sécurité vis-a-vis des valeurs nulles) pour éviter le classique
NullPointerException. Par défaut, une variable ne peut pas étre null . Si vous avez besoin d'autoriser

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Il%20a%20l%E2%80%99avantage%20d%E2%80%99%C3%AAtre%20interop%C3%A9rable,un%20projet%20Java%20en%20Kotlin
https://developer.android.com/kotlin/learn#:~:text=Kotlin%20uses%20two%20different%20keywords,var
https://developer.android.com/kotlin/learn#:~:text=The%20,15
https://developer.android.com/kotlin/learn#:~:text=The%20,15
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Le%20mot%20cl%C3%A9%20,assignable
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Le%20mot%20cl%C3%A9%20,d%C3%A9finitive%20comme%20final%20de%20Java
https://developer.android.com/kotlin/learn#:~:text=Some%20values%20are%20not%20meant,keyword
https://developer.android.com/kotlin/learn#:~:text=Some%20values%20are%20not%20meant,keyword
https://developer.android.com/kotlin/learn#:~:text=Type%20inference

null | il faut expliciter un type nullable en ajoutant ? aprés le type, par exemple : var adresse:
String? = null . Vous devrez alors gérer les cas nullité (opérateur | ?. |, etc.) lorsque vous utiliserez
cette variable, ce qui évite bien des crashes & 9 . Conseil : en cas d'examen pratique, faites attention
aux types nullables lors de l'accés a des données potentiellement nulles (par ex. des champs non
initialisés) pour éviter des exceptions inattendues.

Fonctions

La déclaration d'une fonction en Kotlin se fait avec le mot-clé | fun | suivi du nom, des paramétres entre
parenthéses (chacun avec nom et type), et éventuellement du type de retour aprés | : | Exemple d'une
fonction qui additionne deux entiers :

fun somme(a: Int, b: Int): Int {
return a + b

Ici| somme(3, 5) renverrait 8. Kotlin permet aussi d'inférer le type de retour et de conciser la syntaxe
pour les fonctions simples. Par exemple, on peut écrire la méme fonction sur une seule ligne : | fun
somme(a: Int, b: Int) = a + b/ 10.Si une fonction ne renvoie rien (procédure), son type de
retour est| Unit (analogue a void), et on peut méme omettre Unit dans la déclaration.

Les fonctions sont des citoyens de premiére classe en Kotlin : on peut les stocker dans des variables, les
passer en paramétre, etc., mais ceci dépasse le cadre de l'introduction. Conseil examen : n'hésitez pas a
utiliser des fonctions pour organiser votre code et éviter les répétitions. Méme pour une petite app,
découper le code en fonctions claires (par ex. K calculerScore() | afficherResultat() , etc.)
rendra votre logique plus lisible et facile a déboguer sous la pression du temps.

Classes et objets

Définir une classe en Kotlin est concis. On utilise le mot-clé | class | suivi du nom de la classe. Les
propriétés (attributs) et un constructeur primaire peuvent étre déclarés directement dans l'entéte de
la classe. Par exemple:

class Rectangle(val hauteur: Double, val longueur: Double) {
val perimetre = (hauteur + longueur) * 2

Cette classe | Rectangle | possede deux propriétés immuables hauteur |et| longueur et calcule une
propriété | perimetre a partir de celles-ci 11 . Vous pouvez créer une instance avec val rect =

Rectangle(5.0, 2.0) etaccédera rect.perimetre . Par défaut, les classes Kotlin ne peuvent pas
étre héritées (elles sont final). Si vous voulez permettre I'héritage, déclarez la classe avec open class .

Pour des classes qui servent surtout a transporter des données (comme un modele avec juste des
propriétés), Kotlin propose les data classes. En ajoutant le mot-clé |data devant la classe, le
compilateur génére automatiquement pour vous des méthodes utilitaires comme | toString() ,
equals() , hashCode() et copy() '2.Exemple:| data class Tache(val titre: String,

val fait: Boolean) . Une data class est idéale pour représenter les entités de votre application
(tache, utilisateur, message, etc.) car elle fournit d'emblée un comparateur structurel et peut étre

http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=val%20x%3A%20Int%20%3D%20null
https://kotlinlang.org/docs/basic-syntax.html#:~:text=A%20function%20with%20two%20,return%20type
https://kotlinlang.org/docs/basic-syntax.html#:~:text=Properties%20of%20a%20class%20can,in%20its%20declaration%20or%20body
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=,d%C3%A9structur%C3%A9es%20de%20l%E2%80%99objet%20par%20exemple

facilement copiée. Conseil : utilisez les data classes sans hésiter pour vos modéles de données, cela vous
évitera d'écrire du code passe-partout inutile lors d'un exam.

Collections (listes et autres)

Kotlin dispose d'une panoplie de collections : listes ((List), listes modifiables (MutablelList),
ensembles (| Set), maps (Map), etc. La syntaxe littérale permet de créer rapidement des collections.
Par exemple : | val fruits = listOf("pomme", "banane", "kiwi") crée une liste immutable de
chaines. Vous pouvez itérer facilement dessus avec une boucle for |:

val items = listOf("apple"”, "banana", "kiwifruit")
for (item in items) {
println(item)

Vous pouvez aussi Vvérifier la présence dun élément avec [lopérateur in :
if ("banana" in items) println("La banane est dans la liste") 13 . Les collections
Kotlin offrent des opérations de haute niveau trés pratiques, comme | filter , map |, | sortedBy , etc.,
utilisant souvent des lambdas (fonctions anonymes). Par exemple, pour filtrer et transformer une liste :

val nombres = 1ist0f(0,1,2,3,4,5,6,7)
val resultats = nombres.filter { it > 5 }.map { it * 2 }
println(resultats) // Affiche [12, 14]

Ici on a filtré les nombres >5 puis multiplié chacun par 2, le tout en une seule ligne 14 . A savoir : la
plupart des collections en Kotlin existent en version immutable (par défaut) et mutable. Une | List
créée par listOf est non modifiable (pas d'ajout/retrait d'élément). Pour une liste mutable, utilisez
mutableListOf . De méme, mapOf vs| mutableMapOf | etc.

Conseils pour I'examen : - Gérez bien vos imports (Kotlin regroupe beaucoup de fonctions utilitaires en
extensions, souvent il suffit d'ajouter import kotlin.collections.* ou dautres selon besoin).
Android Studio aide généralement en auto-complétant les imports.

- Utilisez les boucles et conditions Kotlin qui sont plus expressives. Par exemple, le ' when remplace
avantageusement les switch/cascade de if.

Entrainez-vous un peu sur ces bases Kotlin avant le jour J. Comprendre ces fondamentaux vous fera
gagner du temps lors du développement de I'app Android.

2. Introduction a Android Studio et a la structure d'un projet
Android

Avant de plonger dans Jetpack Compose, il faut maitriser l'outil et 'organisation d'un projet Android.
Android Studio est I'IDE officiel pour développer sur Android. Assurez-vous de lavoir installé et
configuré. Vous créerez un nouveau projet en choisissant le template “Empty Compose Activity”
(Activité Compose vide). Ce gabarit génére une application de base utilisant Compose avec une activité
principale toute préte.

https://kotlinlang.org/docs/basic-syntax.html#:~:text=fun%20main%28%29%20,%2F%2FsampleEnd
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=val%20list%20%3D%20listOf,12%2C%2014%2C%2016%2C%2018%2C%2020

Structure d’'un projet Android : dans Android Studio, I'explorateur de projets vous montre typiquement
les dossiers suivants pour le module “app” : - manifests/ : contient le fichier AndroidManifest.xml,
qui déclare les composants de [lapplication (activités, permissions, etc.). Par exemple, la
<application> |y englobe une ou plusieurs balises | <activity> |. Lactivité principale (MainActivity)
doit y étre déclarée avec un intent-filter pour le LAUNCHER (point d'entrée) 15 . Si une activité n'est pas
listée dans le manifeste, elle ne pourra pas étre lancée par le systeme 16 .- java/ ou kotlin/
contient le code source Kotlin de l'application, organisé par packages. C'est ici que se trouve votre
MainActivity.kt généré par le template, et ou vous créerez vos autres classes (activités
supplémentaires, data classes, ViewModel, etc.). - |res/ | : contient les ressources. On y trouve
notamment le sous-dossier | layout/ | (pour les layouts XML classiques, toutefois avec Compose on en
utilisera peu), [drawable/ | (images et formes graphiques), | values/ | (fichiers XML définissant des
valeurs réutilisables telles que couleurs, styles, dimensions, strings de localisation, etc.). Dans un projet
Compose, on aura surtout un fichier themes.xml dans| values/ |pour le théme de l'appli, mémesila
plupart du théme est aussi géré en Kotlin via MaterialTheme.

Lorsque vous créez une Empty Compose Activity, Android Studio géneére une activité Kotlin (par ex.
MainActivity) qui étend ComponentActivity . Au lieu de définir un layout XML dans | onCreate ,
elle utilise | setContent { ... } pour définir I'UI via des composables Compose. Par exemple, le
template appelle souvent une fonction | Greeting("Android") a lintérieur de | setContent | et
fournit un théme Material3 par défaut. Il crée également un fichier | Theme.kt (dans le package
ui.theme) contenant la définition du théme Material de l'application (couleurs, typographies, shapes),
et une fonction MyApplicationTheme | ou similaire. Selon le template, vous pourriez aussi voir une
fonction annotée @Preview pour afficher un apercu de l'interface directement dans I'IDE.

Lancement et tests sur émulateur/appareil : assurez-vous de savoir exécuter votre projet. Branchez
un appareil Android en mode développeur ou configurez un émulateur virtuel (AVD) depuis I'AVD
Manager d’Android Studio. En appuyant sur le bouton "Run" (triangle vert) ou Maj+F10, l'application est
compilée, déployée et lancée. Sur Compose, l'outil d'apercu est trés utile durant le développement :
dans Android Studio, en disposant des fonctions | @Preview , une fenétre Preview affiche en temps réel
le rendu de vos composables sans avoir a lancer l'appli compléte 17 18 . Clest un gain de temps
précieux.

Conseils pour le projet rapide en examen : - Préparation de IIDE : Avant l'examen, assurez-vous
qu’Android Studio fonctionne correctement sur votre machine, que le SDK est a jour et qu'un émulateur
est configuré. Vous ne voulez pas perdre 30 minutes a résoudre un probléme denvironnement le
moment venu. - Squelettes de code : N'hésitez pas a créer un projet de test a 'avance avec une Compose
Activity vide pour vous familiariser avec la structure. Repérez ou se trouve la fonction | setContent et
comment sont organisés les fichiers de théme. Le jour J, vous pourrez partir de ce squelette plus
sereinement. - Gradle et dépendances : Le template Compose inclut normalement tout le nécessaire
(Compose UI, Material, etc.). Si vous devez ajouter une bibliothéque (par ex. Room ou Navigation),
souvenez-vous que cela se fait dans app/build.gradle(.kts) | en ajoutant la dépendance et en
synchronisant. Si possible, ayez sous la main les versions de dépendances requises ou utilisez le BOM
Compose qui gére les versions pour vous (c'est souvent déja configuré dans les projets récents). -
Organisation du code : Méme pour un petit projet d'examen, organisez vos fichiers : gardez par exemple
les écrans UI dans un fichier ou package ui/ |, les modéles de données dans un fichier séparé, etc.
Android Studio permet de créer des packages pour structurer (clic droit sur le dossier java = New >
Package). Cela peut sembler du détail, mais retrouver rapidement ou est telle fonction sous stress vous
fera gagner de précieuses minutes.

https://developer.android.com/guide/topics/manifest/activity-element#:~:text=%3Cactivity%3E%20%7C%20App%20architecture%20,the%20system%20and%20never%20run
https://stackoverflow.com/questions/19122386/activity-declaration-in-androidmanifest-xml#:~:text=Overflow%20stackoverflow,app%20to%20the%20Android%20system
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Recr%C3%A9er%20votre%20projet.%20L%27application%20elle,haut%20de%20la%20fen%C3%AAtre%20d%27aper%C3%A7u
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Image

En résumé, Android Studio est votre allié : maitrisez-en les bases (création de projet, exécution, usage
du preview Compose) et comprenez I'arborescence d’'un projet Android. Une fois cela en place, on peut
se concentrer sur Jetpack Compose pour construire l'interface utilisateur.

3. Fondamentaux de Jetpack Compose (Composable, Column,
Row, Text, Button, etc.)

Jetpack Compose est le nouveau toolkit déclaratif pour construire des interfaces Android de maniere
plus simple et plus rapide. Plutét que d'écrire du XML, on décrit I'UI directement en Kotlin via des
fonctions dites composables. Compose utilise bien moins de code boilerplate et offre des API Kotlin
intuitives 19 .

Fonctions Composables : toute fonction d'interface que vous voulez rendre réutilisable ou affichable
doit étre annotée @Composable . Par exemple, une fonction simple pour afficher un texte peut étre :

@Composable
fun MessageCard(name: String) {
Text(text = "Hello $name!™)

Ici| Text estlui-méme une fonction Composable fournie par la bibliotheque Compose UI qui affiche du
texte a l'écran. Vous pouvez appeler |MessageCard("Android") depuis une autre fonction
composable (par exemple dans votre | setContent). Compose se charge alors de convertir cela en
éléments d'Ul réels. Important : on ne peut appeler une composable que depuis une autre composable
ou depuis la lambda de | setContent . Vous ne pouvez pas invoquer directement une fonction
@Composable depuis du code impératif classique.

Dans votre MainActivity.onCreate | vous verrez typiquement:

setContent {
// on définit ici le contenu de 1'Activity via Compose
MyApplicationTheme {
// Par exemple
MessageCard(name = "Android")

Le bloc setContent déclare la hiérarchie d'interface de I'écran en appelant vos composables.
Compose utilise un moteur de rendu qui recompose automatiquement I'UI quand les données
changent, en ne mettant a jour que ce qui est nécessaire.

Exemple d'interface créée avec Jetpack Compose : une carte avec une image et du texte. Avec Compose, il suffit
de quelques composables (Image, Text, Row, Column) pour arriver a ce résultat, le tout sans utiliser de layout
XML 20 21

Les composables de base fournis par Compose incluent notamment : - Text - pour afficher du texte
(équivalent d'un TextView). Exemple : | Text("Bonjour le monde") . On peut ajuster son style via

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Jetpack%C2%A0Compose%20est%20un%20kit%20d%27outils,des%20API%20en%20Kotlin%20intuitives
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Tout%20d%27abord%2C%20affichez%20un%20message,qu%27%C3%A0%20partir%20d%27autres%20fonctions%20modulables
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=class%20MainActivity%20%3A%20ComponentActivity%28%29%20,%7D%20%7D

style = MaterialTheme.typography.bodyMedium ou sa couleur via color = Color.Red, etc.
- Button - pour un bouton cliquable. On [lutilise en fournissant une action onClick et un contenu.
Exemple :

Button(onClick = { /* action */ }) {
Text("Cliquez-moi")

Compose fournit aussi des variantes comme TextButton ,| OutlinedButton selon le style Material
Design souhaité. - Row et Column - les conteneurs de mise en page. Une Row dispose ses enfants
horizontalement cbte a cbte, tandis qu'une Column |les dispose verticalement 22 23 | Ce sont
I'équivalent déclaratif des LinearLayout en orientation horizontale ou verticale. On peut leur ajouter des

Modifier pour la taille, padding, etc. (nousy reviendrons). - Image - pour afficher une image. On
utilise généralement un painterResource | pour charger une ressource drawable. Exemple :

Image(painter = painterResource(R.drawable.mon_image), contentDescription =
"Description™)

On peut modifier sa forme (cercle, coin arrondis) avec| .clip(shape) |et sa taille avec .size(dp)
via des modificateurs 24 25 . - Spacer - un composable invisible utilisé pour insérer un espace vide
(vertical ou horizontal) entre des éléments, avec un Modifier.width() lou .height() 26 27 .-
Surface - un conteneur souvent utilisé pour appliquer un fond ou une élévation a un bloc d'UI (par
exemple pour une carte). On l'utilise en Material3 pour créer une surface avec une couleur de fond du
théme.

Composition hiérarchique : Compose vous fait construire l'interface en imbriquant des composables.
Par exemple, pour faire une carte de message avec une photo de profil et deux textes (auteur et
message), on peut écrire :

@Composable
fun MessageCard(msg: Message) {
Row(modifier = Modifier.padding(8.dp)) {
Image(
painter = painterResource(R.drawable.profile_picture),
contentDescription = null, // image décorative
modifier = Modifier
.size(40.dp)
.clip(CircleShape)
.border(1.5.dp, MaterialTheme.colorScheme.primary,
CircleShape)
)
Spacer(modifier = Modifier.width(8.dp))
Column {
Text(text = msg.author, style =
MaterialTheme.typography.titleSmall)
Spacer(modifier = Modifier.height(4.dp))
Text(text = msg.body, style =
MaterialTheme.typography.bodyMedium, maxLines = 1)

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%40Composable%20fun%20MessageCard%28msg%3A%20Message%29%20,
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Row%28modifier%20%3D%20Modifier,primary%2C%20CircleShape
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20keep%20track%20if,mutableStateOf%28false%29
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=contentDescription%20%3D%20null%2C%20modifier%20%3D,dp
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=color%20%3D%20MaterialTheme,titleSmall

Dans ce code, on combine Row, Column, Text, Image, Spacer pour structurer le contenu 28 29 .
Limage est en cercle avec bordure, suivie d'un espace, puis d'une colonne contenant deux textes. Sans
Compose, cela aurait nécessité un layout XML complexe, ici tout est dans une fonction Kotlin lisible.

Modifier et mises en forme : Le paramétre modifier disponible sur de nombreux composables
permet de leur appliquer des modificateurs pour la mise en page ou le style. Par exemple,
Modifier.padding(8.dp) ajoute une marge de 8dp autour dun élément 30,
Modifier.fillMaxWidth() |ferait s'‘étendre un composable sur toute la largeur disponible, etc. Les
modificateurs se chénent via le . | et sont appliqués dans l'ordre d'écriture. Ce systéme remplace les
attributs XML layout_width, layout_height, margin, etc., par une approche fluide et programmatique.

MaterialTheme : Jetpack Compose est orienté Material Design par défaut. Le template de projet crée
un theme (Material3) que vous pouvez utiliser via MaterialTheme | pour styliser vos composants
(couleurs, typographie). Par exemple, MaterialTheme.colorScheme.primary vous donne la
couleur primaire du théme, utilisable sur vos textes, fonds, etc. Le théme Material3 inclut des styles
prédéfinis de texte (h1, body1, etc.) accessibles via ' MaterialTheme. typography . Dans notre code ci-
dessus, on a utilisé MaterialTheme.typography.titleSmall pour le nom dauteur. Pensez a
envelopper I'ensemble de votre UI dans le théme, typiquement en appelant MyApplicationTheme
{ Surface { ... } } danslesetContent, afin que tout hérite du design choisi 31 32,

Apercu dans Android Studio : grace aux annotations @Preview , vous pouvez prévisualiser vos
composables sans lancer l'app. Exemple :

@Preview(showBackground = true)
@Composable
fun PreviewMessageCard() {
MyApplicationTheme {
MessageCard(Message("Lexi", "Jetpack Compose est géenial !"))

Cela va afficher dans I'IDE un rendu de MessageCard avec un théme appliqué, trés utile pour vérifier
l'apparence 33 34 . Conseil examen : utilisez les Previews pendant que vous codez I'UL Cela vous permet
de repérer rapidement un probléme d'affichage (texte qui se chevauche, etc.) sans perdre de temps a
relancer 'émulateur.

Interactions de base : Pour rendre un composable interactif, Compose propose des modificateurs
comme clickable | (pour rendre cliquable n'importe quel composable) ou des composables préts a
'emploi comme |Button, IconButton| TextField (pour la saisie texte), des cases a cocher
(Checkbox), etc. Par exemple, pour rendre notre carte de message cliquable :

Row(modifier = Modifier
.padding(8.dp)

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=fun%20MessageCard%28msg%3A%20Message%29%20,primary
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20keep%20track%20if,mutableStateOf%28false%29
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=La%20structure%20de%20votre%20message,am%C3%A9liorer%20la%20mise%20en%20page
https://developer.android.com/develop/ui/compose/tutorial#:~:text=Note%3A%20the%20Empty%20Compose%20Activity,subpackage
https://developer.android.com/develop/ui/compose/tutorial#:~:text=class%20MainActivity%20%3A%20ComponentActivity%28%29%20,%7D
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%40Composable%20fun%20MessageCard%28name%3A%20String%29%20,
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20

.clickable { /* action au clic */ }

) { ...}

Ainsi, toute la ligne devient cliquable.

Cycle de vie Compose : Compose adopte un paradigme déclaratif. Vous n'avez plus a manuellement
trouver des vues par ID ni & appeler myTextView.setText() dans votre activité. A la place, vous
déclarez “voici a quoi doit ressembler I'UI pour tel état de données”. Compose se charge d'appeler vos
composables et de les reconstruire (recomposer) automatiquement quand les données sous-jacentes
changent. Nous verrons dans la section sur la gestion d'état comment cela fonctionne.

Conseils en vrac pour Compose : - Moins de code impératif : évitez de penser en termes de “mettre a
jour I'UI" manuellement. Concentrez-vous sur la description de l'écran en fonction des données. -
Organisez vos composables : n'hésitez pas a créer de petites fonctions composables pour des éléments
récurrents (un widget de profil utilisateur, un champ dentrée personnalisé, etc.). Cela améliore la
lisibilité et la réutilisabilité. - Préfixe @Composable : Toute fonction composable doit avoir le décorateur
@Composable . Si vous oubliez, Android Studio vous le signalera. De méme, vous verrez qu'une
composable ne peut pas appeler directement une fonction standard qui retourne un UI (car elle n'est
pas @Composable). Respectez bien cette contrainte, sinon I'IDE va raler. - Erreurs communes : Si rien ne
s'affiche a I'écran, vérifiez que vous appelez bien votre composable principal dans | setContent . Par
exemple, si vous avez fait une fonction AccueilScreen() , assurez-vous que | setContent

{ AccueilScreen() } | est présent. Une autre erreur classique en Compose est d'oublier un
Modifier.fillMaxSize() ou un Scroll, ce qui peut tronquer votre contenu. Apprenez a repérer ces soucis en
observant l'apercu ou I'UI sur I'émulateur.

En maitrisant ces bases de Compose (Text, Button, Row/Column, etc.), vous pourrez rapidement
construire l'interface de votre application. Dans la prochaine section, nous verrons comment naviguer
entre plusieurs écrans composables.

4. Navigation entre écrans (Jetpack Navigation Compose)

La plupart des applications réelles comportent plusieurs écrans entre lesquels 'utilisateur peut naviguer
(pages de contenu, formulaires, écran de détails, etc.) En Modern Android Development, le
composant Jetpack Navigation simplifie la gestion de la navigation et de la pile décrans. Jetpack
Navigation Compose est l'extension qui permet d'utiliser ce composant directement avec Compose, de
facon déclarative et type-safe.

Principe : On définit un graph de navigation composé de destinations, et un NavController pour
piloter la navigation. En Compose, une destination correspond généralement a une fonction
@Composable représentant I'écran. Le NavController s'occupe de changer 'écran affiché et de gérer la
“Back Stack” (pile d’historique). Voici les éléments clés :

- NavController : Cest la classe centrale qui orchestre la navigation entre vos écrans composables 35 .
Il sait quels écrans sont disponibles et permet de passer de I'un a l'autre via des méthodes comme
navigate() , popBackStack() , etc. Dans Compose, on obtient une instance via | val
navController = rememberNavController() au sein dun composable (souvent au niveau de

l'activité ou du composant racine).

- NavHost : C'est un composable fourni par la librairie Navigation Compose. Il sert de conteneur pour
afficher le bon écran en fonction de I'état du NavController 36 . En définissant un NavHost, on lui
associe le navController, une destination de départ, et on déclare a lintérieur toutes les routes
(composables) possibles de l'app. - NavGraph / routes : On peut nommer chaque écran par un

https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation#:~:text=,container%20for%20displaying%20the%20current
https://developer.android.com/develop/ui/compose/navigation#:~:text=,the%20navigation%20graph%20are%20composables

identifiant de route (une simple chaine de caractére) ou utiliser une classe scellée/enum pour plus de
sareté. Chaque route est reliée a une composable. Le NavGraph est la structure qui mappe ces routes
aux écrans 35 .

Concrétement, avec la bibliothéque navigation-compose, on va écrire quelque chose comme :

NavHost(navController = navController, startDestination = "accueil") {
composable("accueil") { AccueilScreen(navController) }
composable("details") { DetailsScreen(navController) }

Ici on a deux écrans, "accueil" et "details". En exécutant navController.navigate("details") |, on
demandera a NavHost d'afficher la DetailsScreen, en empilant I'écran précédent dans le back stack.

Mise en place : Pour utiliser Navigation Compose, il faut ajouter la dépendance
androidx.navigation:navigation-compose . Assurez-vous de l'avoir dans votre build.gradle (le
template “Empty Compose Activity” ne linclut pas par défaut). Ensuite, typiquement on crée un
composable racine qui gére la nav, par exemple :

@Composable
fun MyAppNavHost() {

val navController = rememberNavController()

NavHost(navController = navController, startDestination = "screen1") {
composable("screen1") { Ecrani(navController) }
composable("screen2") { Ecran2(navController) }

// etc. Ajoutez toutes les routes nécessaires

On appellera MyAppNavHost () ' dansle setContent de l'activité principale pour initialiser la nav.

Navigation et actions utilisateur : Pour passer d'un écran a l'autre, on utilise le NavController. Par
exemple, dans Ecran1, un bouton “Aller a I'écran 2" pourrait étre :

Button(onClick = { navController.navigate("screen2") }) {
Text("Suivant")

Cet appel empile I'écran2. Le NavController gere automatiquement le bouton retour (Back) d’Android
pour revenir en arriere dans la pile. Si vous voulez gérer explicitement le retour, vous pouvez appeler
navController.popBackStack() (pour dépiler un écran).

Si vous avez plusieurs étapes, vous pouvez aussi naviguer en passant des arguments aux composables.
Navigation Compose permet de passer des paramétres typés via la fonction | composable(route)

{ backStackEntry -> ... }, ou plus simplement de stocker I'état partagé dans un ViewModel
commun (nous en parlerons plus loin). Pour un début, sachez qu'il est possible d'ajouter | /{param}

https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation#:~:text=,container%20for%20displaying%20the%20current

dans une route et de le récupérer, mais cela peut étre complexe sous pression, donc on conseille de
limiter les arguments ou d'utiliser des ViewModel partagés pour I'examen.

Exemple simple : Supposons une app de quiz a deux écrans : 'écran de question et I'écran de résultat.
On peut définir :

NavHost(navController, startDestination = "question") {
composable("question") { QuizQuestionScreen(onQuizEnd = { score ->
// Naviguer vers l'écran résultat en passant le score
navController.navigate("resultat/$score")
P}
composable(
route = "resultat/{score}",
arguments = listOf(navArgument("score") { type = NavType.IntType })
) { backStackEntry ->
val score = backStackEntry.arguments?.getInt("score") ?: 0
QuizResultScreen(score, onRetry = {
navController.popBackStack("question", inclusive = false)

})

Ici, on passe un paramétre score via la route. A 'examen, si la gestion darguments vous parait
compliquée, une approche plus simple est d'utiliser un ViewModel qui stocke le score globalement.

Navigation et AppBar : Pensez a mettre a jour le titre du TopAppBar ou le bouton de retour en
fonction de I'écran courant. Vous pouvez observer le
navController.currentBackStackEntryAsState() pour adapter I'UI (par exemple afficher une
fleche de retour sur les écrans secondaires). Toutefois, cela entre dans des détails qu'on peut éviter
dans un mini-projet d'examen en gardant une interface simple.

Exemple d'application multi-écrans : une conversation chat affichée via Compose. Lutilisateur peut naviguer
dans les messages. Avec Navigation Compose, chaque écran (liste de conversations, détail d'une conversation,
etc.) est un composable dans le NavHost. La LazyColumn n'affiche ici que les éléments visibles, offrant de
hautes performances pour les longues listes 37 38,

Conseils pour la navigation en examen : - Simplifiez les chemins : N'utilisez que quelques écrans (2
ou 3 maximum) pour limiter la complexité. Par exemple, un écran principal et un écran de formulaire/
détails. - Préparez du code de navigation générique : Vous pouvez mémoriser un extrait de code
NavHost comme squelette et l'adapter rapidement (pensez a importer
androidx.navigation.compose.* | et a ajouter la dépendance). - Testez vos transitions : Vérifiez
en runnant que cliquer sur vos boutons change bien d'écran et que le bouton “Back” du téléphone
fonctionne (sinon, c'est souvent parce que vous avez mal configuré le NavController ou que vous
empilez plusieurs fois le méme écran). - Pas de panique si bloqué : En cas de bug de navigation, un
contournement rapide peut étre de tout mettre sur un seul écran et de gérer l'affichage de pseudo-
pages via des if en Kotlin (exemple : |if (showResult) { ResultUI() } else

{ QuestionUI() }). Ce n'est pas architecturalement idéal, mais en situation d'examen, cela peut
sauver la fonctionnalité si la navigation vous pose probléme. Cependant, essayez de suivre les bonnes
pratiques avec NavController si possible, car c'est plus propre et souvent attendu.

10

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Une%20discussion%20compos%C3%A9e%20d%27un%20seul,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=import%20androidx

Jetpack Navigation Compose vous évite décrire du code spaghetti pour passer d'une activité a l'autre ou
gérer des fragments. Une fois configuré, il suffit dappeler | navController.navigate(route) et
Compose s'occupe du reste. Profitez-en pour structurer clairement vos écrans et rendre votre app
navigable intuitivement.

5. Gestion d'état avec remember et mutableStateOf

La gestion d’état est au coeur de Jetpack Compose. Dans l'approche déclarative, l'interface se met a jour
automatiquement en fonction de I'état de vos données. Il faut donc savoir créer et manipuler cet état de
maniere appropriée.

mutableStateOf | : c'est une fonction qui prend une valeur initiale et retourne un objet état
observable. En dautres termes, c'est un conteneur dont la valeur peut changer et qui informera
Compose de la nécessité de recompose I'Ul quand ¢a arrive. Exemple : val nom =
mutableStateOf("Jean") . On obtient un | State<String> dont la valeur initiale est "Jean". Pour
accéder a la valeur, on fait | nom.value , et pour la modifier, nom.value = "Pierre" | Cependant,
dans Compose on préfére souvent utiliser le délégateur by pour plus de concision.

remember | : cette fonction est utilisée a l'intérieur d'une composable pour se souvenir de I'état a
travers les recompositions. Si vous créez un objet d’état sans | remember |, il sera recréé a chaque
recomposition, ce qui n'est pas le comportement voulu pour conserver une valeur. En combinant les
deux:

var compteur by remember { mutableStateOf(0) }

Ici on déclare une variable compteur qui est un état mutable se souvenant de sa valeur. A chaque fois
que la composable est ré-évaluée (par Compose), la valeur précédente sera retenue au lieu de
réinitialiser a 0.

Recomposition automatique : Lorsque la valeur d'un mutableStateOf change, Compose marque
les fonctions composables qui l'utilisent pour étre recomposées (c'est-a-dire exécutées de nouveau afin
de mettre I'UL a jour) 39 . Par exemple, siona:

var texte by remember { mutableStateOf("Bonjour") }
Text(texte)
Button(onClick = { texte = "Bonsoir" }) { Text("Changer") }

Au clic du bouton, on change la variable texte . Compose détecte que texte |est un état utilisé dans
un composable (le Text), et va re-appeler la composable englobante pour rafraichir 'écran. Résultat : le
Text affichera "Bonsoir" sans que vous ayez eu a manipuler directement la vue.

Exemple pratique : Imaginons un bouton qui, a chaque clic, incrémente un compteur affiché a I'écran.
Avec Compose, cela donne:

@Composable
fun CompteurScreen() {
var count by remember { mutableStateOf(0) }

11

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Les%20fonctions%20modulables%20peuvent%20stocker,ce%20qu%27on%20appelle%20la%20recomposition

Column(horizontalAlignment = Alignment.CenterHorizontally) {
Text("Compteur : $count")
Button(onClick = { count++ }) {
Text("Incrementer")

Au départ, count vaut 0. On affiche "Compteur : 0". Quand on appuie sur le bouton, count++
modifie I'état. Compose recompose automatiquement la fonction CompteurScreen , donc le Text est
redessiné avec la nouvelle valeur de count ("Compteur : 1", puis 2, etc.). Ce mécanisme est trés puissant
car il vous évite d'écrire du code de liaison Ul/valeur manuellement - tout est réactif.

Le mot-clé by et les imports : Vous noterez l'usage de by pour déléguer l'accés a la valeur d'un
State. Cest purement du sucre syntaxique pour éviter décrire .value partout. Pour que cela
fonctionne, assurez-vous d'importer import androidx.compose.runtime.getValue |et| import

androidx.compose.runtime.setValue (Android Studio le propose normalement automatiquement)
40

Plusieurs états : Vous pouvez bien sdr avoir plusieurs variables d'état dans une méme interface. Par
exemple, un champ texte et une case a cocher auraient chacun leur | remember

{ mutableStateOf(...) } . Veillez juste a les initialiser a l'intérieur de la composable (ou dans un
ViewModel, cf section suivante).

rememberSaveable | : Il existe une variante de remember qui permet de sauvegarder I'état a travers
les changements de configuration (comme la rotation d'écran), c'est | rememberSaveable | Il fonctionne
comme remember mais en plus, il sauvegarde la valeur dans un SavedInstanceState. Pour un examen
de 3h, ce détail n'est pas forcément crucial, sauf si vous savez que l'évaluateur va tourner I'écran pour
tester ! Par prudence, vous pouvez remplacer la plupart des remember par rememberSaveable, surtout
pour des données simples (types primitifs, String, etc. supportés par Bundle). Sinon, documentez dans
votre copie que en cas de rotation |'état se réinitialise, mais qu'on pourrait utiliser rememberSaveable
pour y remédier.

Exemple d'utilisation dans une UI Compose : Reprenons la carte de message de la section
précédente, en y ajoutant la capacité de se déplier pour afficher tout le texte. On peut utiliser un état
booléen isExpanded pour chaque message, initialisé a false :

@Composable
fun MessageCard(msg: Message) {
var isExpanded by remember { mutableStateOf(false) }
Column(modifier = Modifier.clickable { isExpanded = !isExpanded }) {
Text(text = msg.author)
Text(
text = msg.body,
maxLines = if (isExpanded) Int.MAX_VALUE else 1

12

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Remarque%3AVous%20devez%20ajouter%20les%20importations,setValue

Ici, on se souvient de la variable isExpanded pour chaque MessageCard. Par défaut non étendu. Le
Column a un modifier clickable qui inverse isExpanded au clic 29 41 . Grace a Compose, cliquer sur le
message modifie isExpanded, ce qui déclenche une recomposition du Text secondaire avec un
maxLines | différent, révélant ainsi tout le texte. C'est fluide et sans code impératif de manipulation de
TextView. Compose gére I'animation d'expansion si on le souhaite (via animateContentSize() | par
exemple, en modifiant le Modifier) 42 , mais c’est optionnel.

Portée de I'état : Un piége classique est de définir un remember a un niveau trop bas ou trop haut.
Regle d'or : I'état minimal requis pour un sous-composant devrait étre hoisté (remonté) au composant
parent si plusieurs composables en dépendent. Par exemple, si vous avez une liste de taches avec des
cases a cocher, vous pouvez gérer |'état “coché/pas coché” soit individuellement dans chaque item
(remember dans I'item composable), soit de maniere centralisée dans la liste (une liste de booléens
dans le ViewModel ou le composant parent). Pour un petit projet, on peut faire au plus simple, mais
sachez que soulever I'état permet de le partager.

Conseils d’utilisation de I'état en examen : - Toujours initialiser I'état correctement : si vous utilisez

mutableStateOf |, pensez a la valeur initiale adéquate (ex: une chaine vide | "" | pour un champ texte,
false pour un switch off, etc.). - Eviter les états non nécéssaires : Ne dupliquez pas l'information. Si un
état peut étre dérivé d'un autre (par ex, vous stockez déja une liste, pas besoin d'un state séparé pour
“count” = list.size), utilisez la source directe. Trop d'états rend la logique confuse. - Tester la
reactivité : jouez avec votre UI - si une valeur change mais rien ne se met a jour, c'est souvent que vous
n‘avez pas utilisé un mutableStateOf/remember correctement. A l'inverse, si ca recomposé de facon
infinie ou inattendue, vérifiez de ne pas recréer un state a chaque recomposition par erreur (d'ou
Iimportance du remember). - Nettoyage : remember ne persiste I'état qu'au sein du cycle de vie du
composable. Si le composable disparait (ex: on navigue ailleurs), I'état est perdu. Si vous avez des états
qu'il faut vraiment conserver plus globalement (ex: panier d'achat), envisagez un ViewModel ou un état
hoisté plus haut dans l'arbre de composables.

En résumé, Compose élimine le besoin de gérer manuellement les changements d'UI : on manipule
juste des états Kotlin, et l'interface “suit”. C'est trés confortable une fois qu'on a pris le pli. Avec
remember { mutableStateOf(...) } | vous avez 90% des cas d'usage d'interactivité couverts
(champs modifiables, toggles, compteurs, etc.). Dans la section suivante, nous verrons comment
intégrer un ViewModel pour gérer I'état de maniere encore plus propre, surtout quand l'application
grossit.

6. Intégration de ViewModel (basique)

Le ViewModel est un composant du pattern MVVM (Model-View-ViewModel) qui fait partie des
bibliothéques Android Jetpack. C'est un objet qui a vocation a conserver létat de l'interface et la logique
métier associée, indépendamment du cycle de vie des activités/composables. En clair, il sert de tampon
entre les données et I'UI : il fournit a I'UI les données prétes a afficher et récupére les actions de I'UI
pour mettre a jour ces données, le tout en survivant aux rotations d'écran et autres recreations
d'activité.

Dans le contexte de Compose, l'utilisation du ViewModel est fortement encouragée pour tout état non
éphémere ou partagé entre plusieurs composables. Jetpack Compose supporte totalement les
ViewModels Jetpack 43, via une intégration directe.

Créer un ViewModel : On définit une classe qui hérite de | ViewModel (du package androidx.lifecycle).
Exemple basique :

13

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20keep%20track%20if,mutableStateOf%28false%29
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20toggle%20the%20isExpanded,titleSmall
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Configurez%20maintenant%20la%20modification%20de,taille%20du%20conteneur%20de%20messages
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=,provides%20access%20to%20business%20logic

class MonViewModel : ViewModel() {
// Un état de UI stocké dans le VM
var compteur by mutableStateOf(0)
private set // accés en lecture seule de 1l'extérieur

fun incrementer() {
compteur++

Ici, compteur estun état(on peut méme le déclarer en MutableLiveData ou StateFlow, mais Compose
permet l'utilisation directe de mutableStateOf dans un ViewModel). On met private set pour que
seul le ViewModel modifie sa valeur. La fonction | incrementer () |encapsule la logique de mise a jour.
Un ViewModel peut également initier des chargements de données, appeler des repositories, etc., mais
pour un exam simple on aura surtout de petits morceaux de logique.

Associer un ViewModel a I'UI Compose : Compose fournit I'API viewModel() pour récupérer une
instance de ViewModel associée a l'activité ou a une navigation destination. Vous pouvez l'appeler
directement dans une composable. Par exemple :

@Composable
fun CompteurScreen(viewModel: MonViewModel = viewModel()) {
val compteur = viewModel.compteur // comme c'est un State<Int>, Compose
le rend observable
Column {
Text("Valeur : $compteur")
Button(onClick = { viewModel.incrementer() }) {
Text("Cliquez")

Ici, viewModel() va par défaut fournir une instance de MonViewModel en se basant sur le
ViewModelStoreOwner | courant (I'activité héte par défaut, ou la NavBackStackEntry si on est dans
NavHost). Cela veut dire que si plusieurs écrans utilisent le méme MonViewModel, ils partageront la
méme instance (ce qui peut étre utile pour un état global). Attention : on ne peut pas scope un
ViewModel a une simple fonction composable non liée a une navigation ou une Activity 44 . En gros,
il faut que Compose sache a quel “scope” de vie attacher le ViewModel (Activity, Fragment, Navigation
graph). Si vous appelez viewModel() | dans une composable trés profondément imbriquée, il utilisera
toujours I'Activity par défaut, sauf si vous étes dans NavHost. Si vous voulez un ViewModel par écran de
NavHost, il est conseillé d'appeler ' val vm: MonViewModel = viewModel() | a lintérieur de la
lambda de composable{ } de NavHost, ainsi le ViewModel sera scoped a cette destination de
navigation.

Dans l'exemple ci-dessus, viewModel.compteur estde type Int |(en fait| mutableStateOf s'utilise
comme un State ici). Compose va observer ce | compteur | pour recomposer CompeurScreen dés qu'il
change. Ainsi, quand on appelle viewModel.incrementer() , la valeur augmente et I'UI se met a
jour automatiquement.

14

https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=When%20using%20Jetpack%20Compose%2C%20ViewModel,more%20active%20as%20UI%20controllers

Avantages du ViewModel : - Il survit aux rotations et recréations d'activité (contrairement aux variables
stockées directement dans une composable sans rememberSaveable). Si l'utilisateur tourne l'écran, le
ViewModel n'est pas recréé, donc compteur |gardera sa valeur et on n‘aura pas dereseta 0 45 46 -]l
sépare les responsabilités : la UI ne fait que afficher et déléguer les actions, le ViewModel gére la
logique (calculer un score, valider une entrée, charger des données d'une base, etc.). Cela rend le code
plus testable et clair. - On peut partager un méme ViewModel entre plusieurs écrans (par ex, un
ViewModel “Panier” accessible depuis I'écran liste produits et I'écran détail produit). - Le ViewModel peut
exposer l'état sous forme de LiveData ou Flow, que Compose peut observer via collectAsState()
ou | observeAsState() . Cependant, pour de la simplicité on peut aussi utiliser des
mutableStateOf directement dans le ViewModel comme montré, ce qui évite d'introduire la notion
de LiveData.

Exemple concret : Si on reprend notre concept d'application de taches (to-do list) : - On peut avoir un
TodoViewModel | avec une liste de taches en état (var tasks = mutableStatelListOf<Tache>()
par exemple, ou un SnapshotStatelist). - Le ViewModel fournirait des fonctions
ajouterTache(tache: Tache) |, | supprimerTache(tache) , etc.,, qui modifient la liste. - L'écran
Compose (la liste des taches) récupérerait | val tasks = todoViewModel.tasks | et I'afficherait (voir
LazyColumn section suivante), et appellerait | todoViewModel.ajouterTache(...) quand
l'utilisateur valide le formulaire d'ajout. Compose rendra la LazyColumn réactive a toute modification de

la liste (les SnapshotStatelList émettent des recompositions sur changement).

Importer le ViewModel : Assurez-vous d'ajouter la dépendance

implementation("androidx.lifecycle:lifecycle-viewmodel-compose:X.Y.Z") (et
éventuellement lifecycle-runtime-ktx |). Dans les derniers BOM Android, elle est souvent incluse.
Sans cela, la fonction viewModel() | dans Compose pourrait ne pas étre reconnue.

Conseils usage ViewModel en examen : - Ne perdez pas de temps inutile : Si votre application est trés
simple (par ex, juste un écran formulairetrésultat), vous pouvez techniquement vous passer de
ViewModel en gérant |'état avec remember. Mais si la consigne de I'examen mentionne ou attend un
ViewModel, montrez-en un usage basique comme ci-dessus. Cest généralement bien vu de structurer
en MVVM méme un petit projet. - Pas de contexte Android dans le VM : Rappelez-vous qu'un ViewModel
ne doit pas contenir de référence directe a Ul ou contexte (pas d'Activity, pas de View). Il doit
uniquement manipuler des données. Compose permet parfois d'accéder a LocalContext , mais ne
passez pas ¢a a un ViewModel. Si vous avez besoin d'une ressource (ex: string), mieux vaut la injecter ou
I'exposer autrement. Cependant, pour un petit exam, ce point ne devrait pas trop se poser. - Nettoyage :
Un ViewModel peut implémenter onCleared() si des ressources doivent étre libérées quand il est
détruit (ex: fermer une connexion). Dans un contexte 3h, c'est rare d’en avoir besoin. - Communication UI
<> VM : Utilisez soit des fonctions du VM pour que I'UI lui envoie des événements (comme

incrementer ()), soit modifiez directement les propriétés du VM si elles sont var publiques (mais c'est
moins encapsulé). Lapproche idiomatique est de garder les propriétés en lecture seule et d'avoir des
méthodes dans le VM. - Observabilité : Si vous utilisez LiveData ou Flow dans le VM, Compose peut les
observer via | collectAsState() |. Mais on peut éviter cette couche pour un exam de base et utiliser
directly mutableStateOf comme montré.

En somme, ViewModel vous aidera a gérer I'état de maniére robuste dans Compose. Pour notre besoin
(maitriser une app en 3h), un seul ViewModel peut souvent suffire a gérer l'essentiel de I'état de
I'application (par ex, toutes les données de votre ToDo ou quiz). Vous centralisez ainsi la logique et vous
laissez 'UI Compose se rafraichir en fonction. Cela réduit le risque de bugs lors des changements de
configuration et clarifie le code. On va maintenant appliquer tout cela pour créer des formulaires et des
listes dynamiques.

15

https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=The%20ViewModel%20%20class%20is,as%20when%20rotating%20the%20screen
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=The%20alternative%20to%20a%20ViewModel,persistence%20that%20resolves%20this%20issue

7. Création de formulaires simples (ex : login, inscription)

Les formulaires (écran de login, d'inscription, de saisie de données) sont un cas trés courant et un bon
moyen de tester vos compétences Compose. Un formulaire typique comprend des champs de texte,
éventuellement des sélecteurs (checkbox, radio) et des boutons pour soumettre. Voyons comment
gérer cela en Compose pour un débutant.

Champs de texte (TextField /| OutlinedTextField) : Compose fournit des composables pour la
saisie utilisateur. Le plus utilisé est 'TextField (style Material filled) et sa variante
OutlinedTextField (avec bordure). Ils nécessitent un parametre principal pour le texte et un
lambda pour gérer la modification : - Ancienne approche (value/onValueChange) :

var email by remember { mutableStateOf("") }
OutlinedTextField(

value = email,

onValueChange = { email = it },

label = { Text("Email") }

Ici, on lie le contenu du champ email & une variable d'état locale. A chaque saisie (touche frappée),

Compose appelle onValueChange avec la nouvelle valeur et on met a jour notre état, ce qui

recompose le TextField avec le nouveau texte. Important : sans cet état, le TextField ne pourra pas étre

édité (compose a besoin de la source de vérité).

- Nouvelle approche (Material3 1.4+ avec TextFieldState) : plus avancée, on peut utiliser
rememberTextFieldState() |. Pour un exam, on peut rester sur l'approche classique value/

onValueChange qui est bien comprise.

Pour un champ de mot de passe, on veut masquer le texte saisi. On peut utiliser
visualTransformation = PasswordVisualTransformation() sur un OutlinedTextField pour
remplacer les caractéres par des points. Exemple :

var password by remember { mutableStateOf("") }
OutlinedTextField(
value = password,
onValueChange = { password = it },
label = { Text("Mot de passe") },
visualTransformation = PasswordVisualTransformation(),
keyboardOptions = KeyboardOptions(keyboardType = KeyboardType.Password)

Ici on indique aussi au clavier virtuel qu'il s'agit d'un champ de mot de passe (¢ca peut changer l'affichage
de la touche de validation, etc.). On pourrait ajouter une icone a droite pour afficher/masquer le mot de
passe en jouant sur visualTransformation dynamique, mais c'est du bonus.

Boutons de soumission : Un formulaire a souvent un bouton "Valider" ou "Se connecter". Ce sera un
composable Button | standard. Dans son onClick, on va vérifier les champs et agir en conséquence
(par exemple, envoyer une requéte de login ou simplement naviguer vers un autre écran si c'est un
examen hors-ligne). Dans un contexte d'examen, vous pouvez simuler la validation de login (pas besoin

16

d’'une vraie authentification). Par exemple, on peut afficher un Toast ou juste naviguer vers un écran
"Bienvenue".

Validation de champs : Pour un simple exam, on peut implémenter des validations basiques du style
“champ requis” ou “email doit contenir @". Ceci peut se faire en ajustant I'état. Par exemple, on peut
avoir un état pour l'erreur et afficher un texte rouge si erreur. Par simplicité :

var errorMessage by remember { mutableStateOf("") }
Button(onClick = {
if (email.isBlank() || password.isBlank()) {
errorMessage = "Veuillez remplir tous les champs"
} else {
errorMessage =
// Poursuivre la logique de connexion

¥

}) { Text("Connexion") }

if (errorMessage.isNotEmpty()) {
Text(errorMessage, color = Color.Red)

Ainsi l'erreur s'affiche dynamiquement si le bouton est pressé sans remplir les champs 47 .

Exemple concret de formulaire de login : Un écran de login minimal en Compose pourrait ressembler
aceci:

@Composable

fun LoginScreen(onLoginSuccess: () -> Unit) {
var email by remember { mutableStateOf("") }
var password by remember { mutableStateOf("") }
var error by remember { mutableStateOf("") }

Column(
modifier = Modifier
.fillMaxSize()
.padding(16.dp),
horizontalAlignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center

) A
Text("Connexion", style = MaterialTheme.typography.headlineMedium)
Spacer (Modifier.height(24.dp))
OutlinedTextField(
value = email,
onValueChange = { email = it },
label = { Text("Email") },
modifier = Modifier.fillMaxWidth(),
singlelLine = true,
keyboardOptions = KeyboardOptions(keyboardType =
KeyboardType.Email, imeAction = ImeAction.Next)

)

17

https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20for%20the%20below%20conditions,isNotEmpty

Spacer (Modifier.height(16.dp))
OutlinedTextField(
value = password,
onValueChange = { password = it },
label = { Text("Mot de passe") },
modifier = Modifier.fillMaxWidth(),
singlelLine = true,
visualTransformation = PasswordVisualTransformation(),
keyboardOptions = KeyboardOptions(keyboardType =
KeyboardType.Password, imeAction = ImeAction.Done)

)
Spacer (Modifier.height(16.dp))
Button(
onClick = {
if (email.isBlank() || password.isBlank()) {
error = "Veuillez renseigner email et mot de passe"
} else {

// Ici, on pourrait vérifier la correspondance avec un
utilisateur fictif

error =
onLoginSuccess()
h
T
modifier = Modifier.fillMaxWidth()

) A
Text("Se connecter™)
¥
if (error.isNotEmpty()) {
Spacer (Modifier.height(8.dp))
Text(error, color = MaterialTheme.colorScheme.error)

Ce code met en ceuvre les points clés : champs contrdlés par état, bouton avec validation et message
d'erreur. On utilise quelques KeyboardOptions pour améliorer I'UX (par exemple passer au champ
suivant automatiquement avec imeAction). Note: imeAction = ImeAction.Done permet de
customiser la touche Entrée du clavier (ici pour soumettre).

Capture décran d'un simple formulaire de connexion construit avec Compose, comportant deux champs

(OutlinedTextField pour le nom dutilisateur et le mot de passe) et un bouton de validation 48 49 .
Linterface est épurée : chaque champ affiche un label et le texte saisi, et le bouton “Login” permet de
soumettre le formulaire.

Une fois ce composant LoginScreen prét, on peut l'intégrer dans la NavHost (ex: route "login") ou le
lancer comme écran principal. S'il y avait une navigation a faire aprés connexion, on appellerait
onLoginSuccess() pour naviguer vers I'écran suivant (par exemple
navController.navigate("home")).

18

https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20Creating%20two%20outlined%20text,fillMaxWidth%28%29
https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20Adding%20a%20Spacer%20Spacer,dp

Autres entrées utilisateur courantes : - CheckBox: pour une case a cocher, utilisez
Checkbox(checked = valeur, onCheckedChange = { valeur = it }) avec un état booléen
via remember. - RadioButton: Compose propose RadioButton, généralement on les groupe via un Row/
Column. On garde un état pour la sélection (par ex. une variable choix: String) et on fait
RadioButton(selected = choix == "Optionl1", onClick = { choix = "Option1" }) . -
Switch: similaire a Checkbox, pour on/off.

Conseils formulaires en examen : - Gérez le focus du clavier : Compose gére automatiquement le
focus entre champs si vous utilisez ImeAction.Next comme dans lexemple (il faut aussi un

keyboardActions = KeyboardActions(onNext = { focusManager.moveFocus(...) }) sion
veut le faire proprement). Pour un exam, ce n'est pas grave si l'utilisateur doit toucher le second champ
manuellement, concentrez-vous sur la fonctionnalité. - Limitez la validation : Par manque de temps,
faites des validations simples (champs requis). Si vous avez le temps, montrez-en une plus, par exemple
vérifier que I'email contient "@" ou que le mot de passe a une certaine longueur, mais ce n'est pas
prioritaire. - Accessibilité / ContentDescription : Indiquez des contentDescription sur les éléments non
textuels (icbnes, images) surtout si critique. Ce niveau de détail est bien mais souvent optionnel dans un
contexte exam court. - Ne stockez pas le mot de passe en clair : bon, dans un exam local ce n'est pas
trés grave, mais c'est une mauvaise pratique en vrai. Vous pourriez mentionner oralement ou dans un
commentaire que dans un vrai contexte, on ne ferait pas ¢a ainsi.

En maitrisant les TextField et Buttons, vous pourrez réaliser d'autres formulaires comme une inscription
(pratiguement les mémes éléments qu'un login, avec champs supplémentaires). Compose simplifie la
création de formulaires car tout est lié directement au state, ce qui évite décrire du code “retrouve
l'editText et lis sa valeur”.

8. Utilisation de listes (LazyColumn) avec données dynamiques

Afficher des listes de données est extrémement fréquent (listes darticles, de taches, de messages...).
Avec Jetpack Compose, on utilise principalement LazyColumn (pour une liste verticale) ou LazyRow
(horizontale) pour afficher une collection d'éléments de fagon performante. Lazy signifie que la liste est
rendue de maniére paresseuse : seuls les éléments visibles a I'écran sont composés, ce qui assure de
bonnes performances méme avec de longues listes 50 51,

LazyColumn de base : son utilisation rappelle le RecyclerView + Adapter d'autrefois, mais en beaucoup
plus simple. Exemple minimal :

val fruits = listOf("Banane", "Pomme", "Orange", "Kiwi")
LazyColumn {
items(fruits) { fruit ->
Text("Fruit : $fruit")

Ici, | items(fruits) va itérer sur la liste et pour chaque élément appeler le contenu lambda en
passant I'élément (qu'on nomme ici fruit). Compose génere autant de | Text que nécessaire pour
afficher les 4 fruits, et si la liste était trés longue, il n'en créerait d'abord que suffisamment pour remplir
I'écran puis les suivants au scroll. Vous pouvez aussi spécifier un index si besoin en utilisant l'autre
signature itemsIndexed .

19

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Enrichissons,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=plusieurs%20messages,efficaces%20pour%20les%20longues%20listes

Performance : LazyColumn n‘affiche que les items visibles, ce qui le rend trés efficace pour de
longues listes (scroll infini, etc.) 52 . Vous n‘avez plus besoin de ViewHolder ou d'optimisation manuelle.
Compose recycle/détruit et crée les composables au fil du scroll automatiquement.

Gestion de données dynamiques : Si les données de la liste peuvent changer (par exemple on ajoute/
enléve des éléments), utilisez de préférence une collection State comme SnapshotStateList. Si vous
faites | val malListe = remember { mutableStatelListOf(1,2,3) } , cette liste est observable :
ajouter ou retirer un élément déclenchera la recomposition de LazyColumn. Vous pouvez directement
passer | items(maListe) et Compose détectera les changements (il compare les éléments via leur
key éventuellement). Pour assurer un bon suivi des modifications, surtout si vos éléments ne sont pas
uniques ou la liste peut bouger, il est recommandé de fournir un parameétre | key ' a items. Par exemple,
si vous avez une data class Tache avec un champ id unique, faites
items(tasks, key = { it.id }) { ... } . Ainsi Compose saura mieux identifier chaque item
(utile pour animations ou juste performance de diff).

Exemple : liste de taches : Supposons quon a un état dans le ViewModel : 'val tasks =
mutableStateListOf<Tache>() . On veut afficher la liste et pouvoir cocher/décocher les taches. On
peut faire :

@Composable
fun TaskListScreen(viewModel: TodoViewModel = viewModel()) {
val tasks = viewModel.tasks // SnapshotStatelList<Tache>
LazyColumn {
items(tasks, key { it.id }) { task ->
Row(modifier Modifier.fillMaxWidth().padding(8.dp),
verticalAlignment = Alignment.CenterVertically) {
Checkbox(
checked = task.fait,
onCheckedChange = { viewModel.toggleDone(task) }

)
Text(
text = task.titre,
style = if (task.fait) TextStyle(textDecoration =
TextDecoration.LineThrough) else TextStyle()
)
¥
Divider()

}

// On pourrait ajouter un bouton flottant + (FloatingActionButton) pour
ajouter une tache

b

Ici, chaque item de la LazyColumn est une Row contenant une Checkbox et un Text. La Checkbox
appelle | viewModel.toggleDone(task) | pour mettre a jour la tache (par exemple inverser son
booléen fait). Grace a la nature mutableStatelList, cocher la case modifie la liste (ou l'élément) et
Compose recomposera cet item avec le nouveau état (le Text sera barré si fait = true). Remarque : il faut
que le fait de cocher modifie un State observé, or ici task.fait est une propriété d'un élément de la liste.
Dans un SnapshotStateList, si la data class n'est pas observable elle-méme, il vaut mieux faire
tasks[index] = tasks[index].copy(fait = true) | pour que Compose capte le changement.

20

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=match%20at%20L1294%20plusieurs%20messages,efficaces%20pour%20les%20longues%20listes

Ou déclarer Tache.fait comme var fait by mutableStateOf(false) a lintérieur de la data class,
ce qui est possible. Pour un exam, vous pouvez simplifier en recréant la liste ou en émettant une
nouvelle liste, méme si moins optimal.

Sectionnement, en-tétes, etc. : LazyColumn permet aussi d'insérer des séparateurs ou en-tétes. Vous
pouvez utiliser directement des composables hors de items, par exemple :

LazyColumn {
item { Text("Ma Liste de Fruits") } // un seul élément en-téte
items(fruits) { ... }

Ou intercaler des Divider () | entre items comme dans lI'exemple ci-dessus.

Scrolling : Par défaut, LazyColumn est scrollable. Vous pouvez modifier son comportement avec des
paramétres (par ex. verticalArrangement pour l'espacement entre items, etc.). Si la liste est a
I'intérieur d'un autre composant scrollable, attention a la nested scrolling (un LazyColumn dans un
Column scrollable peut poser probléme, il vaut mieux éviter deux scroll vertical imbriqués).

Affichage conditionnel d’'une liste vide : Si votre liste peut étre vide, prévoyez un petit | if | avant la
LazyColumn :

if (tasks.isEmpty()) {

Text("Aucune tache pour le moment", modifier = Modifier.padding(16.dp))
} else {

LazyColumn { items(tasks) { ... } }

Histoire d'informer l'utilisateur quand il n'y a rien.

Optimisation : Compose gére beaucoup de choses automatiquement. Cependant, pour d'énormes
listes, vous pouvez activer la pagination ou le chargement a la volée. Dans un contexte de 3h, c'est peu
probable qu'on vous demande ¢a. Mentionnez simplement que LazyColumn ne charge que les éléments
visibles 50, ce qui suffit souvent.

Conseils pour les listes en examen : - Mock data : Si nécessaire, créez des données factices pour
démontrer la liste (ex: une liste de 10 taches en dur). Ne perdez pas trop de temps a faire un systeme
d’ajout complet si ce n'est pas demandé - sauf si le sujet I'implique (par ex, “faire une liste ou l'utilisateur
peut ajouter des éléments”). - Scrollable Column vs LazyColumn : Si la liste a trés peu d'éléments fixes,
vous pourriez étre tenté d'utiliser une Column simple avec | .verticalScroll() . Mais montrez que
vous savez utiliser LazyColumn, car c’est la bonne pratique dés qu'on a du contenu en liste, méme
modeste. - UI des items : personnalisez un minimum l'affichage de chaque item pour montrer que vous
savez combiner composables (comme l'exemple avec Checkbox + Text). Si c'est une liste d'objets plus
complexes, n'hésitez pas a créer un composable dédié pour litem (ex: |@Composable fun
TacheItem(task: Tache) { - }) et lappeler dans items:
items(tasks) { Tacheltem(it) } | Cela améliore la lisibilité. - Performance note : vous pouvez
mentionner que c'est plus besoin de ViewHolder, etc. Mais dans le code c'est déja évident.

21

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Enrichissons,efficaces%20pour%20les%20longues%20listes

Avec LazyColumn, afficher un ensemble dynamique devient aisé. Compose s'occupe du recyclage et du
diff. Vous, vous décrivez juste comment rendre un item. Ce sera particulierement utile dans l'application
compléte qu'on va envisager (ToDo, quiz, notes - toutes ont des listes).

9. Stockage local de données avec Room (introduction simple)

Certaines applications nécessitent de stocker des données localement sur l'appareil de l'utilisateur,
par exemple une liste de notes ou de taches qui persiste entre les lancements de l'application. Android
propose la base de données SQLite en natif, mais le framework Room (bibliothéque Jetpack) facilite
grandement son utilisation en offrant une couche dabstraction et des DAO (Data Access Obiject)
puissants. Vu le temps imparti de 3h, il est possible que l'intégration compléte de Room soit un peu
ambitieuse, mais une courte introduction ne fait pas de mal et peut impressionner positivement si bien
gérée.

Principe de Room : Room est une surcouche de SQLite qui utilise la réflexion et les annotations pour
générer le code de base de données. Les éléments principaux sont 53 : - Une classe de base de
données (annotée @Database) qui étend RoomDatabase . Elle définit les entités (tables) qu'elle
contient et offre des méthodes d'accés (DAO). - Des entités (annotées @Entity) qui représentent les
tables de la base, généralement ce sont des data classes Kotlin. Chaque propriété correspond a une
colonne. Il faut une clé primaire (annotée | @PrimaryKey) et on peut spécifier des infos de colonnes
(nom, index, etc.) 54 . - Des DAO (interfaces annotées @Dao) qui contiennent les méthodes pour
interagir avec la base (requétes SQL via @Query |, insertion via | @Insert , mise a jour via @Update |,
suppression via @Delete) 55 56 . Room génére automatiquement limplémentation de ces
interfaces.

Exemple minimal : Supposons une application de notes. On peut créer une entité Note :

@Entity

data class Note(
@PrimaryKey(autoGenerate = true) val id: Int = 0,
val contenu: String,
val date: Long

Ici| id |sera la clé primaire auto-générée (0 signifie que Room la remplira a I'insertion). Ensuite un DAO :

@Dao

interface NoteDao {
@Query("SELECT * FROM Note")
fun getAll(): List<Note>

@Insert
fun insert(note: Note)

@Delete
fun delete(note: Note)

22

https://developer.android.com/training/data-storage/room#:~:text=There%20are%20three%20major%20components,in%20Room
https://developer.android.com/training/data-storage/room#:~:text=The%20following%20code%20defines%20a,table%20in%20the%20app%27s%20database
https://developer.android.com/training/data-storage/room#:~:text=%40Dao%20interface%20UserDao%20%7B%20%40Query%28,fun%20getAll%28%29%3A%20List%3CUser
https://developer.android.com/training/data-storage/room#:~:text=%40Query%28,User

Enfin la classe database :

@Database(entities = [Note::class], version = 1)
abstract class AppDatabase : RoomDatabase() {
abstract fun noteDao(): NoteDao

Pour utiliser cette base, il faut créer une instance de AppDatabase. Room fournit une méthode builder :

val db = Room.databaseBuilder(context, AppDatabase::class.java, "ma-
database.db").build()
val noteDao = db.noteDao()

On peut ensuite appeler noteDao.getAll() pour récupérer les notes, mais attention, cela doit se
faire en dehors du thread principal (Room force I'appel en asynchrone pour les queries longues). En
pratique, on utiliserait des coroutines (suspend functions) ou LiveData/Flow pour ne pas bloquer I'UIL

Dans un examen court, on ne vous en voudra pas de simplifier (par ex, appeler sur un thread IO ou
simuler l'opération). Limportant est de montrer la structure.

Intégration avec Compose/ViewModel : Le ViewModel peut contenir le noteDao| ou mieux, le
référencer via un Repository. On peut appeler getAll() dans init du ViewModel pour peupler un état
initial des notes. Ou utiliser un Flow et collectAsState en Compose. Cela commence a faire beaucoup
de choses a mettre en place en 3h, donc il faut jauger. Si 'exam attend explicitement Room, vous pouvez
préparer du code ou le pseudo-code comme ci-dessus.

Conseils de simplification pour I'exam : - Vous pouvez limiter I'implémentation. Par exemple, juste
démontrer la création de l'entité et du DAO sans forcément utiliser effectivement la DB dans l'app, mais
en expliquant que dans un vrai contexte on ferait noteDao.insert(note) quand l'utilisateur ajoute une
note. - Ou alors, utiliser Room seulement pour stocker une petite info (par ex. les taches) et montrer une
requéte simple.

Quand persister les données : Si l'application le justifie (ToDo, notes), c’'est bien de sauvegarder en
base pour retrouver les données au redémarrage. Dans le cadre de l'examen, on ne pourra sans doute
pas démontrer la persistance sur plusieurs lancements (sauf si examinateur teste lapp apreés
fermeture). Mais mentionner la persistance est un plus théorique.

Room et threads : Rappel : par défaut, les méthodes DAO ne sont pas suspendues, donc il faut les
appeler dans un | CoroutineScope(Dispatchers.I0) . Si on utilise Flow (en mettant
@Query("SELECT * FROM Note") fun getAll(): Flow<List<Note>>), Room geére
I'asynchronisme automatiquement et on collectera dans Compose. Ce niveau de détail peut étre omis si
c'est trop.

Conseils en examen pour Room : - Ne vous embourbez pas dans la config : ajouter Room nécessite
souvent d'ajouter le plugin KSP ou annotationProcessor. Si vous ne l'avez jamais fait, faites-y attention.
Ex: dans gradle, ajouter ksp("androidx.room:room-compiler:2.x.x") . Sans cette configuration,
Room ne générera rien et vous aurez des erreurs. Il faut aussi
implementation("androidx.room:room-ktx:2.x.x") et runtime. - Plan B : Si Room pose

23

probléme, mentionnez dans votre rapport comment vous auriez stocké les données. Montrez l'entité et
dites “faute de temps, limplémentation d'insertion n’a pas été finalisée, mais la structure Room est en
place”. Mieux vaut ¢ca que de tout casser. - Ne pas bloquer I'UI : Si vous appelez une query directement,
I'app pourrait crasher (Room jette une exception si appel sur main thread). Si vous n‘avez pas le temps
de mettre en place coroutines, vous pouvez temporairement autoriser mainThread queries avec

.allowMainThreadQueries() | sur le builder Room (a n'utiliser qu'en debug !). Cest sale en prod,
mais toléré en contexte d'apprentissage pour tester 57 . Vous pourriez justifier cela par le contexte
restreint de I'examen.

TL;DR Room : 3 annotations principales (@Entity, @Dao, @Database) et votre base est préte a l'emploi
sans écrire de SQL vous-méme. Par exemple, I'image ci-dessous illustre l'architecture de Room : la classe
Database donne acces aux DAO, qui eux permettent de faire des requétes sur les tables entités 58 59 .

(Pas de capture décran ici pour Room car c'est conceptuel, mais vous pouvez imaginer un schéma avec
IAppDatabase, le DAO et lentité.)

10. Exemple d'application compléte réalisable en 3 heures

Pour conclure, mettons tout ensemble dans un exemple concret d’application qu'on pourrait réaliser
en environ 3 heures de code : une application de gestion de taches (ToDo app) simple. C'est un choix
judicieux car elle combine plusieurs concepts que nous avons vus : un écran avec une liste de taches
(LazyColumn), la possibilité d'ajouter une tache via un formulaire (TextField + Button), de marquer des
taches comme effectuées (gestion d'état + interactions), et la persistance locale (on peut y intégrer
Room pour sauvegarder les taches).

Remarque : Vous pourriez tout aussi bien implémenter une mini app de quiz (écrans enchainés avec
Navigation et calcul de score) ou une app de notes. Nous détaillons l'exemple ToDo, mais les autres
suivent des schémas similaires en utilisant les mémes briques.

Fonctionnalités de la ToDo App : - Afficher la liste des taches existantes (avec leur statut fait / pas fait).
- Permettre d'ajouter une nouvelle tache via un champ de texte et un bouton “Ajouter”. - Optionnel :
Permettre de supprimer une tache ou de la marquer terminée (par un checkbox). - LUI se met a jour en
temps réel quand on ajoute/termine une tache. - Bonus si le temps : stocker la liste dans une base
Room pour la retrouver a la relance de l'app.

Structure générale : On aura deux écrans principaux : 1. TaskListScreen - I'écran d'accueil affichant la
liste des taches et un bouton pour aller a I'écran d'ajout. 2. AddTaskScreen - un écran avec un champ
texte pour la description de la tache et un bouton de validation. (On pourrait aussi faire ce formulaire
d'ajout en bas de la liste sur le méme écran pour simplifier, mais utilisons la navigation pour
démonstration).

On utilisera Navigation Compose pour passer de l'un a l'autre, et un ViewModel (TodoViewModel) pour
conserver la liste des taches et gérer les opérations.

Data model : une data class Tache(val id: Int, val titre: String, val fait: Boolean =
false) . Si on intégre Room, on lui mettrait @Entity et @PrimaryKey. Sinon, on la traite en mémoire

seulement.

ViewModel :

24

https://developer.android.com/training/data-storage/room#:~:text=Setup
https://developer.android.com/training/data-storage/room#:~:text=,delete%20data%20in%20the%20database
https://developer.android.com/training/data-storage/room#:~:text=the%20different%20components%20of%20Room

class TodoViewModel : ViewModel() {
private var nextId = 0 // pour auto-incrémenter les ids en cas de non-
Room
var tasks = mutableStatelListOf<Tache>()
private set

fun ajouterTache(titre: String) {
if (titre.isBlank()) return
tasks.add(Tache(id = nextId++, titre = titre, fait = false))

fun toggleDone(task: Tache) {
val index = tasks.indexOf(task)
if (index >= 0) {
val ancienne = tasks[index]
tasks[index] = ancienne.copy(fait = !ancienne.fait)

fun supprimerTache(task: Tache) {
tasks.remove(task)

Ici, on gére une liste mutable d'état (SnapshotStateList). | ajouterTache crée une nouvelle tache avec
un ID unique et l'ajoute. toggleDone remplace la tache par une copie inversant le booléen fait (cette
opération notifie Compose que l'item a changé). supprimerTache enléve I'élément. Si on utilisait
Room, ces méthodes appelleraient en plus le DAO correspondant (dao.insert , dao.update ...).
Mais on peut le faire plus tard.

On crée une instance de ce ViewModel au niveau du NavHost ou de [lactivité (via
val todoViewModel: TodoViewModel = viewModel()).

Navigation : Deux routes : "liste" et "ajout". Dans NavHost :

NavHost(navController, startDestination = "liste") {
composable("liste") {
TaskListScreen(

tasks = todoViewModel.tasks,

onToggle = { todoViewModel.toggleDone(it) },

onDelete = { todoViewModel.supprimerTache(it) },
onNavigateToAdd = { navController.navigate("ajout") }

)

¥

composable("ajout") {
AddTaskScreen(

onAdd = { titre ->
todoViewModel.ajouterTache(titre)
navController.popBackStack() // revenir a 1l'écran liste

25

}I
onCancel = { navController.popBackStack() }

On injecte le viewModel ou ses données dans les écrans via les lambdas. On pourrait aussi obtenir
TodoViewModel |dans chaque écran avec val todoViewModel =
viewModel(LocalContext.current as ComponentActivity) |mais passons par parametres pour
plus de clarté.

UI TaskListScreen :

@Composable
fun TaskListScreen(
tasks: List<Tache>,
onToggle: (Tache) -> Unit,
onDelete: (Tache) -> Unit,
onNavigateToAdd: () -> Unit
) A
Scaffold(
topBar = { TopAppBar(title = { Text("Mes Taches") }) },
floatingActionButton = {
FloatingActionButton(onClick = onNavigateToAdd) {
Icon(Icons.Default.Add, contentDescription = "Ajouter")

}
) { padding ->
if (tasks.isEmpty()) {
Box(modifier = Modifier.fillMaxSize().padding(padding),
contentAlignment = Alignment.Center) {
Text("Aucune tache. Cliquez sur + pour en ajouter.")
}
} else {
LazyColumn(modifier = Modifier.padding(padding)) {
items(tasks, key = { it.id }) { task ->
Row(modifier = Modifier
.fillMaxWidth()
.padding(8.dp),
verticalAlignment = Alignment.CenterVertically
) {
Checkbox(checked = task.fait, onCheckedChange = {
onToggle(task) })
Text(
text = task.titre,
modifier = Modifier.weight(1f).padding(start =
8.dp),
style = if (task.fait) TextStyle(textDecoration
= TextDecoration.LineThrough) else TextStyle()
)

26

IconButton(onClick = { onDelete(task) }) {
Icon(Icons.Default.Delete, contentDescription =
"Supprimer")

b
Divider()

Explications : On utilise un | Scaffold qui offre un design de base avec une TopAppBar (titre) et un
FloatingActionButton. Le FAB appelle | onNavigateToAdd pour aller a I'écran d'ajout. Dans le corps, on
affiche soit un message de liste vide, soit la LazyColumn des taches. Chaque ligne affiche une Checkbox
(coche ou décoche via onToggle), le titre de la tache (avec style barré si terminée), et une icone de
poubelle pour supprimer la tache. On a ajouté une petite marge et on utilise Modifier.weight(1f)
sur le texte pour qu'il prenne l'espace disponible entre la checkbox et I'icbne de suppression. On sépare
chaque item par un Divider pour l'esthétique.

Cette UI doit se rafraichir automatiquement quand | tasks change, car |tasks est une
SnapshotStateList observable. Comme on passe tasks: List<Tache> | en param, Compose va sous
le capot convertir cela en State<List<Tache>> si c'est un état (ce qui est le cas). Ainsi, cocher une case
modifie tasks et la LazyColumn se recomposera sur l'item modifié.

UI AddTaskScreen :

@Composable
fun AddTaskScreen(onAdd: (String) -> Unit, onCancel: () -> Unit) {
var texte by remember { mutableStateOf("") }
Column(modifier = Modifier.fillMaxSize().padding(16.dp)) {
Text("Nouvelle tache", style =
MaterialTheme. typography.headlineSmall)
OutlinedTextField(
value = texte,
onValueChange = { texte = it },
label = { Text("Intitulé de la tache") },
modifier = Modifier.fillMaxWidth().padding(vertical = 16.dp)

Row {
Button(onClick = { onCancel() }, modifier = Modifier.weight(1f))

Text("Annuler")
}
Spacer (Modifier.width(8.dp))
Button(onClick = {
onAdd(texte)
}, modifier = Modifier.weight(1f)) {
Text("Ajouter™)

27

Clest un écran trés simple : un champ pour le titre de la tache (contrélé par texte |state), et deux
boutons cote a céte pour Annuler et Ajouter. En cliquant Ajouter, on appelle onAdd(texte) qui,
rappelez-vous, dans NavHost est relié a | todoViewModel.ajouterTache(texte) puis

popBackStack | (retour a la liste). Astuces UX : on pourrait désactiver le bouton Ajouter si| texte |est
vide pour éviter les taches sans nom (via | enabled = texte.isNotBlank() sur le Button), ou
nettoyer le champ aprés ajout (ici on ne revient pas sur cet écran donc pas crucial). On pourrait aussi
gérer le clavier (cacher le clavier au retour), mais pas nécessairement dans le temps imparti.

Test du flux complet : - L'application démarre sur TaskListScreen. Au début, la liste est vide, donc un
message invite a ajouter. - Lutilisateur clique le FAB (+). NavController navigue vers AddTaskScreen. - I
entre un titre et appuie “Ajouter”. Cela déclenche todoViewModel.ajouterTache(titre) et revient
a TaskListScreen. - TaskListScreen se recompose car la liste dans le ViewModel a changé (1 tache
ajoutée). La tache apparait dans la LazyColumn. - Lutilisateur coche la checkbox : onToggle appelle
viewModel.toggleDone -> modifie la liste. Compose met a jour I'UL, le texte se barre. - Il ajoute d'autres
taches etc., éventuellement supprime via la corbeille. - Si on avait la persistance Room, on aurait
initialisé | tasks depuis la DB et mis a jour la DB dans chaque opération. Sans Room, les données sont
en mémoire et perdues si on tue I'app, mais c’est acceptable pour un test rapide.

Ce qui est réalisable en ~3h : Ce projet ToDo est d'ampleur réduite mais couvre nos 10 points : 1. Kotlin
de base : utilisation de data class, listes, variables. 2. Android Studio/projet : on a créé un projet
Compose. 3. Compose UI fondamentaux : Text, Row, Column, Button, Icon, Checkbox, etc. utilisés. 4.
Navigation : NavHost avec deux écrans, usage de navControllernavigate et popBackStack. 5. Etat
remember/mutableStateOf : on s'en sert pour le champ texte, et dans ViewModel on utilise
SnapshotStatelList. 6. ViewModel : TodoViewModel gére I'état de l'app. 7. Formulaire : AddTaskScreen est
un mini formulaire avec champ et boutons. 8. Liste LazyColumn : TaskListScreen affiche LazyColumn de
taches avec items dynamiques. 9. Room : on a montré comment on l'intégrerait (on peut ajouter, en
imagination, l'annotation @Entity sur Tache, etc.). 10. Exemple complet : c'est bien notre ToDo app en
entier.

Conseils finaux pour réussir un projet rapide lors d'un examen :

* Priorisez les fonctionnalités : commencez par mettre en place la structure (écrans + navigation
+ ViewModel) et une fonctionnalité de base qui marche (par ex., ajouter et lister des éléments).
Assurez-vous d'avoir quelque chose de fonctionnel le plus tt possible, puis itérez pour ajouter
des détails (cases a cocher, suppression, validation de formulaire, etc.). Cela vous évite de vous
retrouver avec un squelette non fonctionnel par manque de temps.

« Utilisez le debugger et I'apercu : En Compose, I'apergu est votre ami pour I'U], et vous pouvez
utiliser Logcat ou des Log.d() | pour voir ce qui se passe sur des actions (par exemple logguer
le contenu de la liste aprés un ajout) afin de vérifier la logique rapidement.

* Ne restez pas bloqué : Si une partie vous prend trop de temps (ex: configuration de Room, un
bug de navigation), envisagez de la contourner temporairement (stocker en mémoire plutét
qgu'en DB, utiliser une variable globale en secours, etc.) afin de présenter une application qui
tourne. Vous pourrez expliquer que “faute de temps, la persistance n'est pas implémentée, mais
le reste fonctionne”.

« S'appuyer sur les docs/exemples : Durant la préparation, n'hésitez pas a avoir sous la main
quelques extraits courants (pattern NavHost, instantiation Room, etc.). Cela n'est pas de la triche,

28

c'est de l'efficacité. En examen en conditions réelles, vous auriez acces a la documentation
(souvent on l'autorise pour code, ou au moins les docs officielles).

+ Soin de I'UI minimale : Compose facilite la mise en page, donc essayez d'aligner correctement
vos éléments, de mettre des espacements (| Spacer , padding) pour une Ul propre. Méme si
le design n'est pas l'objectif principal, une app bien présentée fait meilleure impression. Le
MaterialTheme par défaut donne déja un style correct, utilisez-le (comme nos TopAppBar et
FloatingActionButton).

* Tests rapides : Prenez le temps de tester les cas limites de votre appli : ajouter rien (devrait étre
ignoré ou message d'erreur), cocher/décocher plusieurs fois, supprimer la premiére tache, etc.
Corrigez les petites erreurs (par ex., jai fait attention dans toggleDone a créer une nouvelle
instance de tache pour notifier Compose).

« Commentaires et explications : En situation d'examen, commentez votre code pour montrer
que vous comprenez ce que vous faites. Par exemple, un petit commentaire| // Utilisation
de remember pour conserver le texte saisi pendant la recomposition ou|//
Navigation vers 1'écran d'ajout lorsque l'utilisateur clique sur le FAB|
Cela prouve au correcteur que ce n'est pas du code cargo-cult mais bien réfléchi.

En suivant ces conseils et en s'appuyant sur tout ce qu'on a vu (Kotlin, Compose, Architecture MVVM
basique, etc.), vous devriez étre capable de livrer une application Android simple mais compléte en 3
heures. Bonne programmation et n'oubliez pas de respirer : Compose est la pour vous simplifier la vie,
faites-lui confiance

29

T4 5 8 9 12 14 Introduction a Kotlin pour Android
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/

2 3 6 7 Learnthe Kotlin programming language | Android Developers
https://developer.android.com/kotlin/learn

10 11 13 Basic syntax | Kotlin Documentation
https://kotlinlang.org/docs/basic-syntax.html

15 | App architecture - Android Developers

https://developer.android.com/guide/topics/manifest/activity-element

16 Activity Declaration in AndroidManifest.xml - Stack Overflow

https://stackoverflow.com/questions/19122386/activity-declaration-in-androidmanifest-xmi

17 18 19 20 21 22 23 24 25 26 27 28 29 30 33 34 37 38 39 40 41 42 50 51 52 Tytoriel

Android Compose | Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/tutorial?hl=fr

31 32 Android Compose Tutorial | Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/tutorial

35 Navigate between screens with Compose | Android Developers

https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation

36 Navigation with Compose | Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/navigation

43 44 45 46 ViewModel overview | App architecture | Android Developers
https://developer.android.com/topic/libraries/architecture/viewmodel

47 48 49 How to Validate TextFields in a Login Form in Android using Jetpack Compose? -
GeeksforGeeks

https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/

53 54 55 56 57 58 59 Save datain alocal database using Room | App data and files | Android
Developers
https://developer.android.com/training/data-storage/room

30

http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Il%20a%20l%E2%80%99avantage%20d%E2%80%99%C3%AAtre%20interop%C3%A9rable,un%20projet%20Java%20en%20Kotlin
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Le%20mot%20cl%C3%A9%20,assignable
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Le%20mot%20cl%C3%A9%20,d%C3%A9finitive%20comme%20final%20de%20Java
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=val%20x%3A%20Int%20%3D%20null
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=,d%C3%A9structur%C3%A9es%20de%20l%E2%80%99objet%20par%20exemple
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=val%20list%20%3D%20listOf,12%2C%2014%2C%2016%2C%2018%2C%2020
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/
https://developer.android.com/kotlin/learn#:~:text=Kotlin%20uses%20two%20different%20keywords,var
https://developer.android.com/kotlin/learn#:~:text=The%20,15
https://developer.android.com/kotlin/learn#:~:text=Some%20values%20are%20not%20meant,keyword
https://developer.android.com/kotlin/learn#:~:text=Type%20inference
https://developer.android.com/kotlin/learn
https://kotlinlang.org/docs/basic-syntax.html#:~:text=A%20function%20with%20two%20,return%20type
https://kotlinlang.org/docs/basic-syntax.html#:~:text=Properties%20of%20a%20class%20can,in%20its%20declaration%20or%20body
https://kotlinlang.org/docs/basic-syntax.html#:~:text=fun%20main%28%29%20,%2F%2FsampleEnd
https://kotlinlang.org/docs/basic-syntax.html
https://developer.android.com/guide/topics/manifest/activity-element#:~:text=%3Cactivity%3E%20%7C%20App%20architecture%20,the%20system%20and%20never%20run
https://developer.android.com/guide/topics/manifest/activity-element
https://stackoverflow.com/questions/19122386/activity-declaration-in-androidmanifest-xml#:~:text=Overflow%20stackoverflow,app%20to%20the%20Android%20system
https://stackoverflow.com/questions/19122386/activity-declaration-in-androidmanifest-xml
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Recr%C3%A9er%20votre%20projet.%20L%27application%20elle,haut%20de%20la%20fen%C3%AAtre%20d%27aper%C3%A7u
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Image
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Jetpack%C2%A0Compose%20est%20un%20kit%20d%27outils,des%20API%20en%20Kotlin%20intuitives
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Tout%20d%27abord%2C%20affichez%20un%20message,qu%27%C3%A0%20partir%20d%27autres%20fonctions%20modulables
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=class%20MainActivity%20%3A%20ComponentActivity%28%29%20,%7D%20%7D
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%40Composable%20fun%20MessageCard%28msg%3A%20Message%29%20,
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Row%28modifier%20%3D%20Modifier,primary%2C%20CircleShape
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20keep%20track%20if,mutableStateOf%28false%29
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=contentDescription%20%3D%20null%2C%20modifier%20%3D,dp
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=color%20%3D%20MaterialTheme,titleSmall
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=fun%20MessageCard%28msg%3A%20Message%29%20,primary
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20keep%20track%20if,mutableStateOf%28false%29
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=La%20structure%20de%20votre%20message,am%C3%A9liorer%20la%20mise%20en%20page
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%40Composable%20fun%20MessageCard%28name%3A%20String%29%20,
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Une%20discussion%20compos%C3%A9e%20d%27un%20seul,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=import%20androidx
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Les%20fonctions%20modulables%20peuvent%20stocker,ce%20qu%27on%20appelle%20la%20recomposition
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Remarque%3AVous%20devez%20ajouter%20les%20importations,setValue
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20toggle%20the%20isExpanded,titleSmall
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Configurez%20maintenant%20la%20modification%20de,taille%20du%20conteneur%20de%20messages
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Enrichissons,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=plusieurs%20messages,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=match%20at%20L1294%20plusieurs%20messages,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr
https://developer.android.com/develop/ui/compose/tutorial#:~:text=Note%3A%20the%20Empty%20Compose%20Activity,subpackage
https://developer.android.com/develop/ui/compose/tutorial#:~:text=class%20MainActivity%20%3A%20ComponentActivity%28%29%20,%7D
https://developer.android.com/develop/ui/compose/tutorial
https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation#:~:text=,container%20for%20displaying%20the%20current
https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation
https://developer.android.com/develop/ui/compose/navigation#:~:text=,the%20navigation%20graph%20are%20composables
https://developer.android.com/develop/ui/compose/navigation
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=,provides%20access%20to%20business%20logic
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=When%20using%20Jetpack%20Compose%2C%20ViewModel,more%20active%20as%20UI%20controllers
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=The%20ViewModel%20%20class%20is,as%20when%20rotating%20the%20screen
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=The%20alternative%20to%20a%20ViewModel,persistence%20that%20resolves%20this%20issue
https://developer.android.com/topic/libraries/architecture/viewmodel
https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20for%20the%20below%20conditions,isNotEmpty
https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20Creating%20two%20outlined%20text,fillMaxWidth%28%29
https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20Adding%20a%20Spacer%20Spacer,dp
https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/
https://developer.android.com/training/data-storage/room#:~:text=There%20are%20three%20major%20components,in%20Room
https://developer.android.com/training/data-storage/room#:~:text=The%20following%20code%20defines%20a,table%20in%20the%20app%27s%20database
https://developer.android.com/training/data-storage/room#:~:text=%40Dao%20interface%20UserDao%20%7B%20%40Query%28,fun%20getAll%28%29%3A%20List%3CUser
https://developer.android.com/training/data-storage/room#:~:text=%40Query%28,User
https://developer.android.com/training/data-storage/room#:~:text=Setup
https://developer.android.com/training/data-storage/room#:~:text=,delete%20data%20in%20the%20database
https://developer.android.com/training/data-storage/room#:~:text=the%20different%20components%20of%20Room
https://developer.android.com/training/data-storage/room

	Cours de développement Android avec Kotlin & Jetpack Compose (débutant)
	1. Introduction à Kotlin (variables, fonctions, classes, collections)
	Variables : var vs val
	Types de base et inférence de type
	Fonctions
	Classes et objets
	Collections (listes et autres)

	2. Introduction à Android Studio et à la structure d'un projet Android
	3. Fondamentaux de Jetpack Compose (Composable, Column, Row, Text, Button, etc.)
	4. Navigation entre écrans (Jetpack Navigation Compose)
	5. Gestion d'état avec remember et mutableStateOf
	6. Intégration de ViewModel (basique)
	7. Création de formulaires simples (ex : login, inscription)
	8. Utilisation de listes (LazyColumn) avec données dynamiques
	9. Stockage local de données avec Room (introduction simple)
	10. Exemple d'application complète réalisable en 3 heures

