
Cours de développement Android avec Kotlin &
Jetpack Compose (débutant)
Bienvenue dans ce cours accéléré qui vous apprendra les bases du développement d’une application
Android en Kotlin en utilisant Jetpack Compose. L’objectif est de vous fournir en 3 heures les
connaissances nécessaires pour coder une application simple (par exemple pour un examen). Nous
aborderons pas à pas les concepts essentiels : de la syntaxe Kotlin aux composants d’interface
Compose, en passant par la navigation multi-écrans, la gestion d’état, l’utilisation d’un ViewModel, la
création de formulaires, les listes dynamiques et même une introduction au stockage local avec Room.
Chaque section inclut des explications pédagogiques pour débutants, des extraits de code commentés,
des illustrations de l’interface attendue et des conseils pour réussir rapidement lors d’un projet
d’examen.

1. Introduction à Kotlin (variables, fonctions, classes, collections)

Kotlin en bref : Kotlin est un langage moderne et concis, officiellement supporté par Google pour
Android. Il est statiquement typé (les types sont vérifiés à la compilation) et 100% interopérable avec
Java . Kotlin est orienté objet et fonctionnel, ce qui le rend multi-paradigme. Pour nos besoins, nous
allons nous concentrer sur les bases de sa syntaxe.

Variables : var vs val

En Kotlin, on déclare une variable avec les mots-clés var ou val . La différence est cruciale :
- var définit une variable mutable, dont la valeur peut être modifiée après l’initialisation . C’est
l’équivalent d’une variable normale en Java. Par exemple : var compteur: Int = 10 déclare un
entier modifiable initialisé à 10, et on pourrait plus tard faire compteur = 15 .
- val définit une variable immutable, qu’on ne peut pas réassigner une fois initialisée (semblable à
un final en Java) . Si on tente de changer sa valeur, le compilateur produira une erreur. Par
exemple : val langue: String = "Kotlin" crée une constante qui vaudra toujours "Kotlin" .

En résumé, utilisez val par défaut pour toutes les valeurs qui ne devraient pas changer, et var pour
les variables dont le contenu doit évoluer. Cela évite des bugs et clarifie l’intention du code . Conseil
examen : ne vous trompez pas entre val et var . Si une variable ne doit pas être modifiée, utilisez
val – le compilateur vous aidera ainsi à attraper les réassignations non souhaitées.

Types de base et inférence de type

Kotlin gère la plupart des types de base similaires à Java : Int , Long , Double , String , etc. Il
supporte l’inférence de type, ce qui signifie que vous pouvez souvent omettre le type lors de la
déclaration si la valeur initiale est évidente. Par exemple, val compteur = 10 suffit pour que Kotlin
comprenne que c’est un Int . Le langage étant statiquement typé, le type d’une variable est figé à la
compilation et ne changera pas ; cela sécurise votre code .

Kotlin introduit aussi la null-safety (sécurité vis-à-vis des valeurs nulles) pour éviter le classique
NullPointerException. Par défaut, une variable ne peut pas être null . Si vous avez besoin d’autoriser

1

2 3

3

4 5

6

6

7

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Il%20a%20l%E2%80%99avantage%20d%E2%80%99%C3%AAtre%20interop%C3%A9rable,un%20projet%20Java%20en%20Kotlin
https://developer.android.com/kotlin/learn#:~:text=Kotlin%20uses%20two%20different%20keywords,var
https://developer.android.com/kotlin/learn#:~:text=The%20,15
https://developer.android.com/kotlin/learn#:~:text=The%20,15
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Le%20mot%20cl%C3%A9%20,assignable
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Le%20mot%20cl%C3%A9%20,d%C3%A9finitive%20comme%20final%20de%20Java
https://developer.android.com/kotlin/learn#:~:text=Some%20values%20are%20not%20meant,keyword
https://developer.android.com/kotlin/learn#:~:text=Some%20values%20are%20not%20meant,keyword
https://developer.android.com/kotlin/learn#:~:text=Type%20inference

null , il faut expliciter un type nullable en ajoutant ? après le type, par exemple : var adresse:
String? = null . Vous devrez alors gérer les cas nullité (opérateur ?. , etc.) lorsque vous utiliserez
cette variable, ce qui évite bien des crashes . Conseil : en cas d’examen pratique, faites attention
aux types nullables lors de l’accès à des données potentiellement nulles (par ex. des champs non
initialisés) pour éviter des exceptions inattendues.

Fonctions

La déclaration d’une fonction en Kotlin se fait avec le mot-clé fun suivi du nom, des paramètres entre
parenthèses (chacun avec nom et type), et éventuellement du type de retour après : . Exemple d’une
fonction qui additionne deux entiers :

fun somme(a: Int, b: Int): Int {

return a + b

}

Ici somme(3, 5) renverrait 8. Kotlin permet aussi d’inférer le type de retour et de conciser la syntaxe
pour les fonctions simples. Par exemple, on peut écrire la même fonction sur une seule ligne : fun
somme(a: Int, b: Int) = a + b . Si une fonction ne renvoie rien (procédure), son type de
retour est Unit (analogue à void), et on peut même omettre Unit dans la déclaration.

Les fonctions sont des citoyens de première classe en Kotlin : on peut les stocker dans des variables, les
passer en paramètre, etc., mais ceci dépasse le cadre de l’introduction. Conseil examen : n’hésitez pas à
utiliser des fonctions pour organiser votre code et éviter les répétitions. Même pour une petite app,
découper le code en fonctions claires (par ex. calculerScore() , afficherResultat() , etc.)
rendra votre logique plus lisible et facile à déboguer sous la pression du temps.

Classes et objets

Définir une classe en Kotlin est concis. On utilise le mot-clé class suivi du nom de la classe. Les
propriétés (attributs) et un constructeur primaire peuvent être déclarés directement dans l’entête de
la classe. Par exemple :

class Rectangle(val hauteur: Double, val longueur: Double) {

val perimetre = (hauteur + longueur) * 2

}

Cette classe Rectangle possède deux propriétés immuables hauteur et longueur et calcule une
propriété perimetre à partir de celles-ci . Vous pouvez créer une instance avec val rect =
Rectangle(5.0, 2.0) et accéder à rect.perimetre . Par défaut, les classes Kotlin ne peuvent pas
être héritées (elles sont final). Si vous voulez permettre l’héritage, déclarez la classe avec open class .

Pour des classes qui servent surtout à transporter des données (comme un modèle avec juste des
propriétés), Kotlin propose les data classes. En ajoutant le mot-clé data devant la classe, le
compilateur génère automatiquement pour vous des méthodes utilitaires comme toString() ,
equals() , hashCode() et copy() . Exemple : data class Tache(val titre: String,
val fait: Boolean) . Une data class est idéale pour représenter les entités de votre application
(tâche, utilisateur, message, etc.) car elle fournit d’emblée un comparateur structurel et peut être

8 9

10

11

12

2

http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=val%20x%3A%20Int%20%3D%20null
https://kotlinlang.org/docs/basic-syntax.html#:~:text=A%20function%20with%20two%20,return%20type
https://kotlinlang.org/docs/basic-syntax.html#:~:text=Properties%20of%20a%20class%20can,in%20its%20declaration%20or%20body
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=,d%C3%A9structur%C3%A9es%20de%20l%E2%80%99objet%20par%20exemple

facilement copiée. Conseil : utilisez les data classes sans hésiter pour vos modèles de données, cela vous
évitera d’écrire du code passe-partout inutile lors d’un exam.

Collections (listes et autres)

Kotlin dispose d’une panoplie de collections : listes (List), listes modifiables (MutableList),
ensembles (Set), maps (Map), etc. La syntaxe littérale permet de créer rapidement des collections.
Par exemple : val fruits = listOf("pomme", "banane", "kiwi") crée une liste immutable de
chaînes. Vous pouvez itérer facilement dessus avec une boucle for :

val items = listOf("apple", "banana", "kiwifruit")

for (item in items) {

println(item)

}

Vous pouvez aussi vérifier la présence d’un élément avec l’opérateur in :
if ("banana" in items) println("La banane est dans la liste") . Les collections

Kotlin offrent des opérations de haute niveau très pratiques, comme filter , map , sortedBy , etc.,
utilisant souvent des lambdas (fonctions anonymes). Par exemple, pour filtrer et transformer une liste :

val nombres = listOf(0,1,2,3,4,5,6,7)

val resultats = nombres.filter { it > 5 }.map { it * 2 }

println(resultats) // Affiche [12, 14]

Ici on a filtré les nombres >5 puis multiplié chacun par 2, le tout en une seule ligne . À savoir : la
plupart des collections en Kotlin existent en version immutable (par défaut) et mutable. Une List
créée par listOf est non modifiable (pas d’ajout/retrait d’élément). Pour une liste mutable, utilisez
mutableListOf . De même, mapOf vs mutableMapOf , etc.

Conseils pour l’examen : - Gérez bien vos imports (Kotlin regroupe beaucoup de fonctions utilitaires en
extensions, souvent il suffit d’ajouter import kotlin.collections.* ou d’autres selon besoin).
Android Studio aide généralement en auto-complétant les imports.
- Utilisez les boucles et conditions Kotlin qui sont plus expressives. Par exemple, le when remplace
avantageusement les switch/cascade de if.

Entraînez-vous un peu sur ces bases Kotlin avant le jour J. Comprendre ces fondamentaux vous fera
gagner du temps lors du développement de l’app Android.

2. Introduction à Android Studio et à la structure d'un projet
Android

Avant de plonger dans Jetpack Compose, il faut maîtriser l’outil et l’organisation d’un projet Android.
Android Studio est l’IDE officiel pour développer sur Android. Assurez-vous de l’avoir installé et
configuré. Vous créerez un nouveau projet en choisissant le template “Empty Compose Activity”
(Activité Compose vide). Ce gabarit génère une application de base utilisant Compose avec une activité
principale toute prête.

13

14

3

https://kotlinlang.org/docs/basic-syntax.html#:~:text=fun%20main%28%29%20,%2F%2FsampleEnd
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=val%20list%20%3D%20listOf,12%2C%2014%2C%2016%2C%2018%2C%2020

Structure d’un projet Android : dans Android Studio, l’explorateur de projets vous montre typiquement
les dossiers suivants pour le module “app” : - manifests/ : contient le fichier AndroidManifest.xml,
qui déclare les composants de l’application (activités, permissions, etc.). Par exemple, la
<application> y englobe une ou plusieurs balises <activity> . L’activité principale (MainActivity)

doit y être déclarée avec un intent-filter pour le LAUNCHER (point d’entrée) . Si une activité n’est pas
listée dans le manifeste, elle ne pourra pas être lancée par le système . - java/ ou kotlin/ :
contient le code source Kotlin de l’application, organisé par packages. C’est ici que se trouve votre
MainActivity.kt généré par le template, et où vous créerez vos autres classes (activités

supplémentaires, data classes, ViewModel, etc.). - res/ : contient les ressources. On y trouve
notamment le sous-dossier layout/ (pour les layouts XML classiques, toutefois avec Compose on en
utilisera peu), drawable/ (images et formes graphiques), values/ (fichiers XML définissant des
valeurs réutilisables telles que couleurs, styles, dimensions, strings de localisation, etc.). Dans un projet
Compose, on aura surtout un fichier themes.xml dans values/ pour le thème de l’appli, même si la
plupart du thème est aussi géré en Kotlin via MaterialTheme.

Lorsque vous créez une Empty Compose Activity, Android Studio génère une activité Kotlin (par ex.
MainActivity) qui étend ComponentActivity . Au lieu de définir un layout XML dans onCreate ,

elle utilise setContent { ... } pour définir l’UI via des composables Compose. Par exemple, le
template appelle souvent une fonction Greeting("Android") à l’intérieur de setContent et
fournit un thème Material3 par défaut. Il crée également un fichier Theme.kt (dans le package
ui.theme) contenant la définition du thème Material de l’application (couleurs, typographies, shapes),

et une fonction MyApplicationTheme ou similaire. Selon le template, vous pourriez aussi voir une
fonction annotée @Preview pour afficher un aperçu de l’interface directement dans l’IDE.

Lancement et tests sur émulateur/appareil : assurez-vous de savoir exécuter votre projet. Branchez
un appareil Android en mode développeur ou configurez un émulateur virtuel (AVD) depuis l’AVD
Manager d’Android Studio. En appuyant sur le bouton "Run" (triangle vert) ou Maj+F10, l’application est
compilée, déployée et lancée. Sur Compose, l’outil d’aperçu est très utile durant le développement :
dans Android Studio, en disposant des fonctions @Preview , une fenêtre Preview affiche en temps réel
le rendu de vos composables sans avoir à lancer l’appli complète . C’est un gain de temps
précieux.

Conseils pour le projet rapide en examen : - Préparation de l’IDE : Avant l’examen, assurez-vous
qu’Android Studio fonctionne correctement sur votre machine, que le SDK est à jour et qu’un émulateur
est configuré. Vous ne voulez pas perdre 30 minutes à résoudre un problème d’environnement le
moment venu. - Squelettes de code : N’hésitez pas à créer un projet de test à l’avance avec une Compose
Activity vide pour vous familiariser avec la structure. Repérez où se trouve la fonction setContent et
comment sont organisés les fichiers de thème. Le jour J, vous pourrez partir de ce squelette plus
sereinement. - Gradle et dépendances : Le template Compose inclut normalement tout le nécessaire
(Compose UI, Material, etc.). Si vous devez ajouter une bibliothèque (par ex. Room ou Navigation),
souvenez-vous que cela se fait dans app/build.gradle(.kts) en ajoutant la dépendance et en
synchronisant. Si possible, ayez sous la main les versions de dépendances requises ou utilisez le BOM
Compose qui gère les versions pour vous (c’est souvent déjà configuré dans les projets récents). -
Organisation du code : Même pour un petit projet d’examen, organisez vos fichiers : gardez par exemple
les écrans UI dans un fichier ou package ui/ , les modèles de données dans un fichier séparé, etc.
Android Studio permet de créer des packages pour structurer (clic droit sur le dossier java → New >
Package). Cela peut sembler du détail, mais retrouver rapidement où est telle fonction sous stress vous
fera gagner de précieuses minutes.

15

16

17 18

4

https://developer.android.com/guide/topics/manifest/activity-element#:~:text=%3Cactivity%3E%20%7C%20App%20architecture%20,the%20system%20and%20never%20run
https://stackoverflow.com/questions/19122386/activity-declaration-in-androidmanifest-xml#:~:text=Overflow%20stackoverflow,app%20to%20the%20Android%20system
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Recr%C3%A9er%20votre%20projet.%20L%27application%20elle,haut%20de%20la%20fen%C3%AAtre%20d%27aper%C3%A7u
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Image

En résumé, Android Studio est votre allié : maîtrisez-en les bases (création de projet, exécution, usage
du preview Compose) et comprenez l’arborescence d’un projet Android. Une fois cela en place, on peut
se concentrer sur Jetpack Compose pour construire l’interface utilisateur.

3. Fondamentaux de Jetpack Compose (Composable, Column,
Row, Text, Button, etc.)

Jetpack Compose est le nouveau toolkit déclaratif pour construire des interfaces Android de manière
plus simple et plus rapide. Plutôt que d’écrire du XML, on décrit l’UI directement en Kotlin via des
fonctions dites composables. Compose utilise bien moins de code boilerplate et offre des API Kotlin
intuitives .

Fonctions Composables : toute fonction d’interface que vous voulez rendre réutilisable ou affichable
doit être annotée @Composable . Par exemple, une fonction simple pour afficher un texte peut être :

@Composable

fun MessageCard(name: String) {

Text(text = "Hello $name!")

}

Ici Text est lui-même une fonction Composable fournie par la bibliothèque Compose UI qui affiche du
texte à l’écran. Vous pouvez appeler MessageCard("Android") depuis une autre fonction
composable (par exemple dans votre setContent). Compose se charge alors de convertir cela en
éléments d’UI réels. Important : on ne peut appeler une composable que depuis une autre composable
ou depuis la lambda de setContent . Vous ne pouvez pas invoquer directement une fonction
@Composable depuis du code impératif classique.

Dans votre MainActivity.onCreate , vous verrez typiquement :

setContent {

// on définit ici le contenu de l'Activity via Compose

MyApplicationTheme {

// Par exemple :

MessageCard(name = "Android")

}

}

Le bloc setContent déclare la hiérarchie d’interface de l’écran en appelant vos composables.
Compose utilise un moteur de rendu qui recompose automatiquement l’UI quand les données
changent, en ne mettant à jour que ce qui est nécessaire.

Exemple d’interface créée avec Jetpack Compose : une carte avec une image et du texte. Avec Compose, il suffit
de quelques composables (Image, Text, Row, Column) pour arriver à ce résultat, le tout sans utiliser de layout
XML .

Les composables de base fournis par Compose incluent notamment : - Text – pour afficher du texte
(équivalent d’un TextView). Exemple : Text("Bonjour le monde") . On peut ajuster son style via

19

20 21

5

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Jetpack%C2%A0Compose%20est%20un%20kit%20d%27outils,des%20API%20en%20Kotlin%20intuitives
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Tout%20d%27abord%2C%20affichez%20un%20message,qu%27%C3%A0%20partir%20d%27autres%20fonctions%20modulables
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=class%20MainActivity%20%3A%20ComponentActivity%28%29%20,%7D%20%7D

style = MaterialTheme.typography.bodyMedium ou sa couleur via color = Color.Red , etc.
- Button – pour un bouton cliquable. On l’utilise en fournissant une action onClick et un contenu.
Exemple :

Button(onClick = { /* action */ }) {

Text("Cliquez-moi")

}

Compose fournit aussi des variantes comme TextButton , OutlinedButton selon le style Material
Design souhaité. - Row et Column – les conteneurs de mise en page. Une Row dispose ses enfants
horizontalement côte à côte, tandis qu’une Column les dispose verticalement . Ce sont
l’équivalent déclaratif des LinearLayout en orientation horizontale ou verticale. On peut leur ajouter des
Modifier pour la taille, padding, etc. (nous y reviendrons). - Image – pour afficher une image. On

utilise généralement un painterResource pour charger une ressource drawable. Exemple :

Image(painter = painterResource(R.drawable.mon_image), contentDescription =

"Description")

On peut modifier sa forme (cercle, coin arrondis) avec .clip(shape) et sa taille avec .size(dp)
via des modificateurs . - Spacer – un composable invisible utilisé pour insérer un espace vide
(vertical ou horizontal) entre des éléments, avec un Modifier.width() ou .height() . -
Surface – un conteneur souvent utilisé pour appliquer un fond ou une élévation à un bloc d’UI (par
exemple pour une carte). On l’utilise en Material3 pour créer une surface avec une couleur de fond du
thème.

Composition hiérarchique : Compose vous fait construire l’interface en imbriquant des composables.
Par exemple, pour faire une carte de message avec une photo de profil et deux textes (auteur et
message), on peut écrire :

@Composable

fun MessageCard(msg: Message) {

Row(modifier = Modifier.padding(8.dp)) {

Image(

painter = painterResource(R.drawable.profile_picture),

contentDescription = null, // image décorative

modifier = Modifier

.size(40.dp)

.clip(CircleShape)

.border(1.5.dp, MaterialTheme.colorScheme.primary,

CircleShape)

)

Spacer(modifier = Modifier.width(8.dp))

Column {

Text(text = msg.author, style =

MaterialTheme.typography.titleSmall)

Spacer(modifier = Modifier.height(4.dp))

Text(text = msg.body, style =

MaterialTheme.typography.bodyMedium, maxLines = 1)

22 23

24 25

26 27

6

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%40Composable%20fun%20MessageCard%28msg%3A%20Message%29%20,
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Row%28modifier%20%3D%20Modifier,primary%2C%20CircleShape
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20keep%20track%20if,mutableStateOf%28false%29
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=contentDescription%20%3D%20null%2C%20modifier%20%3D,dp
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=color%20%3D%20MaterialTheme,titleSmall

}

}

}

Dans ce code, on combine Row, Column, Text, Image, Spacer pour structurer le contenu .
L’image est en cercle avec bordure, suivie d’un espace, puis d’une colonne contenant deux textes. Sans
Compose, cela aurait nécessité un layout XML complexe, ici tout est dans une fonction Kotlin lisible.

Modifier et mises en forme : Le paramètre modifier disponible sur de nombreux composables
permet de leur appliquer des modificateurs pour la mise en page ou le style. Par exemple,
Modifier.padding(8.dp) ajoute une marge de 8dp autour d’un élément ,
Modifier.fillMaxWidth() ferait s’étendre un composable sur toute la largeur disponible, etc. Les

modificateurs se chênent via le . et sont appliqués dans l’ordre d’écriture. Ce système remplace les
attributs XML layout_width, layout_height, margin, etc., par une approche fluide et programmatique.

MaterialTheme : Jetpack Compose est orienté Material Design par défaut. Le template de projet crée
un thème (Material3) que vous pouvez utiliser via MaterialTheme pour styliser vos composants
(couleurs, typographie). Par exemple, MaterialTheme.colorScheme.primary vous donne la
couleur primaire du thème, utilisable sur vos textes, fonds, etc. Le thème Material3 inclut des styles
prédéfinis de texte (h1, body1, etc.) accessibles via MaterialTheme.typography . Dans notre code ci-
dessus, on a utilisé MaterialTheme.typography.titleSmall pour le nom d’auteur. Pensez à
envelopper l’ensemble de votre UI dans le thème, typiquement en appelant MyApplicationTheme
{ Surface { ... } } dans le setContent, afin que tout hérite du design choisi .

Aperçu dans Android Studio : grâce aux annotations @Preview , vous pouvez prévisualiser vos
composables sans lancer l’app. Exemple :

@Preview(showBackground = true)

@Composable

fun PreviewMessageCard() {

MyApplicationTheme {

MessageCard(Message("Lexi", "Jetpack Compose est génial !"))

}

}

Cela va afficher dans l’IDE un rendu de MessageCard avec un thème appliqué, très utile pour vérifier
l’apparence . Conseil examen : utilisez les Previews pendant que vous codez l’UI. Cela vous permet
de repérer rapidement un problème d’affichage (texte qui se chevauche, etc.) sans perdre de temps à
relancer l’émulateur.

Interactions de base : Pour rendre un composable interactif, Compose propose des modificateurs
comme clickable (pour rendre cliquable n’importe quel composable) ou des composables prêts à
l’emploi comme Button , IconButton , TextField (pour la saisie texte), des cases à cocher
(Checkbox), etc. Par exemple, pour rendre notre carte de message cliquable :

Row(modifier = Modifier

.padding(8.dp)

28 29

30

31 32

33 34

7

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=fun%20MessageCard%28msg%3A%20Message%29%20,primary
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20keep%20track%20if,mutableStateOf%28false%29
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=La%20structure%20de%20votre%20message,am%C3%A9liorer%20la%20mise%20en%20page
https://developer.android.com/develop/ui/compose/tutorial#:~:text=Note%3A%20the%20Empty%20Compose%20Activity,subpackage
https://developer.android.com/develop/ui/compose/tutorial#:~:text=class%20MainActivity%20%3A%20ComponentActivity%28%29%20,%7D
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%40Composable%20fun%20MessageCard%28name%3A%20String%29%20,
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20

.clickable { /* action au clic */ }

) { ... }

Ainsi, toute la ligne devient cliquable.

Cycle de vie Compose : Compose adopte un paradigme déclaratif. Vous n’avez plus à manuellement
trouver des vues par ID ni à appeler myTextView.setText() dans votre activité. À la place, vous
déclarez “voici à quoi doit ressembler l’UI pour tel état de données”. Compose se charge d’appeler vos
composables et de les reconstruire (recomposer) automatiquement quand les données sous-jacentes
changent. Nous verrons dans la section sur la gestion d’état comment cela fonctionne.

Conseils en vrac pour Compose : - Moins de code impératif : évitez de penser en termes de “mettre à
jour l’UI” manuellement. Concentrez-vous sur la description de l’écran en fonction des données. -
Organisez vos composables : n’hésitez pas à créer de petites fonctions composables pour des éléments
récurrents (un widget de profil utilisateur, un champ d’entrée personnalisé, etc.). Cela améliore la
lisibilité et la réutilisabilité. - Préfixe @Composable : Toute fonction composable doit avoir le décorateur
@Composable . Si vous oubliez, Android Studio vous le signalera. De même, vous verrez qu’une

composable ne peut pas appeler directement une fonction standard qui retourne un UI (car elle n’est
pas @Composable). Respectez bien cette contrainte, sinon l’IDE va râler. - Erreurs communes : Si rien ne
s’affiche à l’écran, vérifiez que vous appelez bien votre composable principal dans setContent . Par
exemple, si vous avez fait une fonction AccueilScreen() , assurez-vous que setContent

{ AccueilScreen() } est présent. Une autre erreur classique en Compose est d’oublier un
Modifier.fillMaxSize() ou un Scroll, ce qui peut tronquer votre contenu. Apprenez à repérer ces soucis en
observant l’aperçu ou l’UI sur l’émulateur.

En maîtrisant ces bases de Compose (Text, Button, Row/Column, etc.), vous pourrez rapidement
construire l’interface de votre application. Dans la prochaine section, nous verrons comment naviguer
entre plusieurs écrans composables.

4. Navigation entre écrans (Jetpack Navigation Compose)

La plupart des applications réelles comportent plusieurs écrans entre lesquels l’utilisateur peut naviguer
(pages de contenu, formulaires, écran de détails, etc.). En Modern Android Development, le
composant Jetpack Navigation simplifie la gestion de la navigation et de la pile d’écrans. Jetpack
Navigation Compose est l’extension qui permet d’utiliser ce composant directement avec Compose, de
façon déclarative et type-safe.

Principe : On définit un graph de navigation composé de destinations, et un NavController pour
piloter la navigation. En Compose, une destination correspond généralement à une fonction
@Composable représentant l’écran. Le NavController s’occupe de changer l’écran affiché et de gérer la
“Back Stack” (pile d’historique). Voici les éléments clés :
- NavController : C’est la classe centrale qui orchestre la navigation entre vos écrans composables .
Il sait quels écrans sont disponibles et permet de passer de l’un à l’autre via des méthodes comme
navigate() , popBackStack() , etc. Dans Compose, on obtient une instance via val

navController = rememberNavController() au sein d’un composable (souvent au niveau de
l’activité ou du composant racine).
- NavHost : C’est un composable fourni par la librairie Navigation Compose. Il sert de conteneur pour
afficher le bon écran en fonction de l’état du NavController . En définissant un NavHost, on lui
associe le navController, une destination de départ, et on déclare à l’intérieur toutes les routes
(composables) possibles de l’app. - NavGraph / routes : On peut nommer chaque écran par un

35

36

8

https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation#:~:text=,container%20for%20displaying%20the%20current
https://developer.android.com/develop/ui/compose/navigation#:~:text=,the%20navigation%20graph%20are%20composables

identifiant de route (une simple chaîne de caractère) ou utiliser une classe scellée/enum pour plus de
sûreté. Chaque route est reliée à une composable. Le NavGraph est la structure qui mappe ces routes
aux écrans .

Concrètement, avec la bibliothèque navigation-compose, on va écrire quelque chose comme :

NavHost(navController = navController, startDestination = "accueil") {

composable("accueil") { AccueilScreen(navController) }

composable("details") { DetailsScreen(navController) }

}

Ici on a deux écrans, "accueil" et "details". En exécutant navController.navigate("details") , on
demandera à NavHost d’afficher la DetailsScreen, en empilant l’écran précédent dans le back stack.

Mise en place : Pour utiliser Navigation Compose, il faut ajouter la dépendance
androidx.navigation:navigation-compose . Assurez-vous de l’avoir dans votre build.gradle (le

template “Empty Compose Activity” ne l’inclut pas par défaut). Ensuite, typiquement on crée un
composable racine qui gère la nav, par exemple :

@Composable

fun MyAppNavHost() {

val navController = rememberNavController()

NavHost(navController = navController, startDestination = "screen1") {

composable("screen1") { Ecran1(navController) }

composable("screen2") { Ecran2(navController) }

// etc. Ajoutez toutes les routes nécessaires

}

}

On appellera MyAppNavHost() dans le setContent de l’activité principale pour initialiser la nav.

Navigation et actions utilisateur : Pour passer d’un écran à l’autre, on utilise le NavController. Par
exemple, dans Ecran1, un bouton “Aller à l’écran 2” pourrait être :

Button(onClick = { navController.navigate("screen2") }) {

Text("Suivant")

}

Cet appel empile l’écran2. Le NavController gère automatiquement le bouton retour (Back) d’Android
pour revenir en arrière dans la pile. Si vous voulez gérer explicitement le retour, vous pouvez appeler
navController.popBackStack() (pour dépiler un écran).

Si vous avez plusieurs étapes, vous pouvez aussi naviguer en passant des arguments aux composables.
Navigation Compose permet de passer des paramètres typés via la fonction composable(route)
{ backStackEntry -> ... } , ou plus simplement de stocker l’état partagé dans un ViewModel
commun (nous en parlerons plus loin). Pour un début, sachez qu’il est possible d’ajouter /{param}

35

9

https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation#:~:text=,container%20for%20displaying%20the%20current

dans une route et de le récupérer, mais cela peut être complexe sous pression, donc on conseille de
limiter les arguments ou d’utiliser des ViewModel partagés pour l’examen.

Exemple simple : Supposons une app de quiz à deux écrans : l’écran de question et l’écran de résultat.
On peut définir :

NavHost(navController, startDestination = "question") {

composable("question") { QuizQuestionScreen(onQuizEnd = { score ->

// Naviguer vers l'écran résultat en passant le score

navController.navigate("resultat/$score")

})}

composable(

route = "resultat/{score}",

arguments = listOf(navArgument("score") { type = NavType.IntType })

) { backStackEntry ->

val score = backStackEntry.arguments?.getInt("score") ?: 0

QuizResultScreen(score, onRetry = {

navController.popBackStack("question", inclusive = false)

})

}

}

Ici, on passe un paramètre score via la route. À l’examen, si la gestion d’arguments vous paraît
compliquée, une approche plus simple est d’utiliser un ViewModel qui stocke le score globalement.

Navigation et AppBar : Pensez à mettre à jour le titre du TopAppBar ou le bouton de retour en
fonction de l’écran courant. Vous pouvez observer le
navController.currentBackStackEntryAsState() pour adapter l’UI (par exemple afficher une

flèche de retour sur les écrans secondaires). Toutefois, cela entre dans des détails qu’on peut éviter
dans un mini-projet d’examen en gardant une interface simple.

Exemple d’application multi-écrans : une conversation chat affichée via Compose. L’utilisateur peut naviguer
dans les messages. Avec Navigation Compose, chaque écran (liste de conversations, détail d’une conversation,
etc.) est un composable dans le NavHost. La LazyColumn n’affiche ici que les éléments visibles, offrant de
hautes performances pour les longues listes .

Conseils pour la navigation en examen : - Simplifiez les chemins : N’utilisez que quelques écrans (2
ou 3 maximum) pour limiter la complexité. Par exemple, un écran principal et un écran de formulaire/
détails. - Préparez du code de navigation générique : Vous pouvez mémoriser un extrait de code
NavHost comme squelette et l’adapter rapidement (pensez à importer
androidx.navigation.compose.* et à ajouter la dépendance). - Testez vos transitions : Vérifiez

en runnant que cliquer sur vos boutons change bien d’écran et que le bouton “Back” du téléphone
fonctionne (sinon, c’est souvent parce que vous avez mal configuré le NavController ou que vous
empilez plusieurs fois le même écran). - Pas de panique si bloqué : En cas de bug de navigation, un
contournement rapide peut être de tout mettre sur un seul écran et de gérer l’affichage de pseudo-
pages via des if en Kotlin (exemple : if (showResult) { ResultUI() } else

{ QuestionUI() }). Ce n’est pas architecturalement idéal, mais en situation d’examen, cela peut
sauver la fonctionnalité si la navigation vous pose problème. Cependant, essayez de suivre les bonnes
pratiques avec NavController si possible, car c’est plus propre et souvent attendu.

37 38

10

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Une%20discussion%20compos%C3%A9e%20d%27un%20seul,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=import%20androidx

Jetpack Navigation Compose vous évite d’écrire du code spaghetti pour passer d’une activité à l’autre ou
gérer des fragments. Une fois configuré, il suffit d’appeler navController.navigate(route) et
Compose s’occupe du reste. Profitez-en pour structurer clairement vos écrans et rendre votre app
navigable intuitivement.

5. Gestion d'état avec remember et mutableStateOf

La gestion d’état est au cœur de Jetpack Compose. Dans l’approche déclarative, l’interface se met à jour
automatiquement en fonction de l’état de vos données. Il faut donc savoir créer et manipuler cet état de
manière appropriée.

mutableStateOf : c’est une fonction qui prend une valeur initiale et retourne un objet état
observable. En d’autres termes, c’est un conteneur dont la valeur peut changer et qui informera
Compose de la nécessité de recompose l’UI quand ça arrive. Exemple : val nom =

mutableStateOf("Jean") . On obtient un State<String> dont la valeur initiale est "Jean". Pour
accéder à la valeur, on fait nom.value , et pour la modifier, nom.value = "Pierre" . Cependant,
dans Compose on préfère souvent utiliser le délégateur by pour plus de concision.

remember : cette fonction est utilisée à l’intérieur d’une composable pour se souvenir de l’état à
travers les recompositions. Si vous créez un objet d’état sans remember , il sera recréé à chaque
recomposition, ce qui n’est pas le comportement voulu pour conserver une valeur. En combinant les
deux :

var compteur by remember { mutableStateOf(0) }

Ici on déclare une variable compteur qui est un état mutable se souvenant de sa valeur. À chaque fois
que la composable est ré-évaluée (par Compose), la valeur précédente sera retenue au lieu de
réinitialiser à 0.

Recomposition automatique : Lorsque la valeur d’un mutableStateOf change, Compose marque
les fonctions composables qui l’utilisent pour être recomposées (c’est-à-dire exécutées de nouveau afin
de mettre l’UI à jour) . Par exemple, si on a :

var texte by remember { mutableStateOf("Bonjour") }

Text(texte)

Button(onClick = { texte = "Bonsoir" }) { Text("Changer") }

Au clic du bouton, on change la variable texte . Compose détecte que texte est un état utilisé dans
un composable (le Text), et va re-appeler la composable englobante pour rafraîchir l’écran. Résultat : le
Text affichera "Bonsoir" sans que vous ayez eu à manipuler directement la vue.

Exemple pratique : Imaginons un bouton qui, à chaque clic, incrémente un compteur affiché à l’écran.
Avec Compose, cela donne :

@Composable

fun CompteurScreen() {

var count by remember { mutableStateOf(0) }

39

11

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Les%20fonctions%20modulables%20peuvent%20stocker,ce%20qu%27on%20appelle%20la%20recomposition

Column(horizontalAlignment = Alignment.CenterHorizontally) {

Text("Compteur : $count")

Button(onClick = { count++ }) {

Text("Incrementer")

}

}

}

Au départ, count vaut 0. On affiche "Compteur : 0". Quand on appuie sur le bouton, count++
modifie l’état. Compose recompose automatiquement la fonction CompteurScreen , donc le Text est
redessiné avec la nouvelle valeur de count ("Compteur : 1", puis 2, etc.). Ce mécanisme est très puissant
car il vous évite d'écrire du code de liaison UI/valeur manuellement – tout est réactif.

Le mot-clé by et les imports : Vous noterez l’usage de by pour déléguer l’accès à la valeur d’un
State. C’est purement du sucre syntaxique pour éviter d’écrire .value partout. Pour que cela
fonctionne, assurez-vous d’importer import androidx.compose.runtime.getValue et import
androidx.compose.runtime.setValue (Android Studio le propose normalement automatiquement)

.

Plusieurs états : Vous pouvez bien sûr avoir plusieurs variables d’état dans une même interface. Par
exemple, un champ texte et une case à cocher auraient chacun leur remember

{ mutableStateOf(...) } . Veillez juste à les initialiser à l’intérieur de la composable (ou dans un
ViewModel, cf section suivante).

rememberSaveable : Il existe une variante de remember qui permet de sauvegarder l’état à travers
les changements de configuration (comme la rotation d’écran), c’est rememberSaveable . Il fonctionne
comme remember mais en plus, il sauvegarde la valeur dans un SavedInstanceState. Pour un examen
de 3h, ce détail n’est pas forcément crucial, sauf si vous savez que l’évaluateur va tourner l’écran pour
tester ! Par prudence, vous pouvez remplacer la plupart des remember par rememberSaveable, surtout
pour des données simples (types primitifs, String, etc. supportés par Bundle). Sinon, documentez dans
votre copie que en cas de rotation l’état se réinitialise, mais qu’on pourrait utiliser rememberSaveable
pour y remédier.

Exemple d’utilisation dans une UI Compose : Reprenons la carte de message de la section
précédente, en y ajoutant la capacité de se déplier pour afficher tout le texte. On peut utiliser un état
booléen isExpanded pour chaque message, initialisé à false :

@Composable

fun MessageCard(msg: Message) {

var isExpanded by remember { mutableStateOf(false) }

Column(modifier = Modifier.clickable { isExpanded = !isExpanded }) {

Text(text = msg.author)

Text(

text = msg.body,

maxLines = if (isExpanded) Int.MAX_VALUE else 1

)

}

}

40

12

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Remarque%3AVous%20devez%20ajouter%20les%20importations,setValue

Ici, on se souvient de la variable isExpanded pour chaque MessageCard. Par défaut non étendu. Le
Column a un modifier clickable qui inverse isExpanded au clic . Grâce à Compose, cliquer sur le
message modifie isExpanded, ce qui déclenche une recomposition du Text secondaire avec un
maxLines différent, révélant ainsi tout le texte. C’est fluide et sans code impératif de manipulation de

TextView. Compose gère l’animation d’expansion si on le souhaite (via animateContentSize() par
exemple, en modifiant le Modifier) , mais c’est optionnel.

Portée de l’état : Un piège classique est de définir un remember à un niveau trop bas ou trop haut.
Règle d’or : l’état minimal requis pour un sous-composant devrait être hoisté (remonté) au composant
parent si plusieurs composables en dépendent. Par exemple, si vous avez une liste de tâches avec des
cases à cocher, vous pouvez gérer l’état “coché/pas coché” soit individuellement dans chaque item
(remember dans l’item composable), soit de manière centralisée dans la liste (une liste de booléens
dans le ViewModel ou le composant parent). Pour un petit projet, on peut faire au plus simple, mais
sachez que soulever l’état permet de le partager.

Conseils d’utilisation de l’état en examen : - Toujours initialiser l’état correctement : si vous utilisez
mutableStateOf , pensez à la valeur initiale adéquate (ex: une chaîne vide "" pour un champ texte,

false pour un switch off, etc.). - Éviter les états non nécéssaires : Ne dupliquez pas l’information. Si un
état peut être dérivé d’un autre (par ex, vous stockez déjà une liste, pas besoin d’un state séparé pour
“count” = list.size), utilisez la source directe. Trop d’états rend la logique confuse. - Tester la
reactivité : jouez avec votre UI – si une valeur change mais rien ne se met à jour, c’est souvent que vous
n’avez pas utilisé un mutableStateOf/remember correctement. À l’inverse, si ça recomposé de façon
infinie ou inattendue, vérifiez de ne pas recréer un state à chaque recomposition par erreur (d’où
l’importance du remember). - Nettoyage : remember ne persiste l’état qu’au sein du cycle de vie du
composable. Si le composable disparaît (ex: on navigue ailleurs), l’état est perdu. Si vous avez des états
qu’il faut vraiment conserver plus globalement (ex: panier d’achat), envisagez un ViewModel ou un état
hoisté plus haut dans l’arbre de composables.

En résumé, Compose élimine le besoin de gérer manuellement les changements d’UI : on manipule
juste des états Kotlin, et l’interface “suit”. C’est très confortable une fois qu’on a pris le pli. Avec
remember { mutableStateOf(...) } , vous avez 90% des cas d’usage d’interactivité couverts

(champs modifiables, toggles, compteurs, etc.). Dans la section suivante, nous verrons comment
intégrer un ViewModel pour gérer l’état de manière encore plus propre, surtout quand l’application
grossit.

6. Intégration de ViewModel (basique)

Le ViewModel est un composant du pattern MVVM (Model-View-ViewModel) qui fait partie des
bibliothèques Android Jetpack. C’est un objet qui a vocation à conserver l’état de l’interface et la logique
métier associée, indépendamment du cycle de vie des activités/composables. En clair, il sert de tampon
entre les données et l’UI : il fournit à l’UI les données prêtes à afficher et récupère les actions de l’UI
pour mettre à jour ces données, le tout en survivant aux rotations d’écran et autres recreations
d’activité.

Dans le contexte de Compose, l’utilisation du ViewModel est fortement encouragée pour tout état non
éphémère ou partagé entre plusieurs composables. Jetpack Compose supporte totalement les
ViewModels Jetpack , via une intégration directe.

Créer un ViewModel : On définit une classe qui hérite de ViewModel (du package androidx.lifecycle).
Exemple basique :

29 41

42

43

13

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20keep%20track%20if,mutableStateOf%28false%29
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20toggle%20the%20isExpanded,titleSmall
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Configurez%20maintenant%20la%20modification%20de,taille%20du%20conteneur%20de%20messages
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=,provides%20access%20to%20business%20logic

class MonViewModel : ViewModel() {

// Un état de UI stocké dans le VM

var compteur by mutableStateOf(0)

private set // accès en lecture seule de l'extérieur

fun incrementer() {

compteur++

}

}

Ici, compteur est un état (on peut même le déclarer en MutableLiveData ou StateFlow, mais Compose
permet l’utilisation directe de mutableStateOf dans un ViewModel). On met private set pour que
seul le ViewModel modifie sa valeur. La fonction incrementer() encapsule la logique de mise à jour.
Un ViewModel peut également initier des chargements de données, appeler des repositories, etc., mais
pour un exam simple on aura surtout de petits morceaux de logique.

Associer un ViewModel à l’UI Compose : Compose fournit l’API viewModel() pour récupérer une
instance de ViewModel associée à l’activité ou à une navigation destination. Vous pouvez l’appeler
directement dans une composable. Par exemple :

@Composable

fun CompteurScreen(viewModel: MonViewModel = viewModel()) {

val compteur = viewModel.compteur // comme c'est un State<Int>, Compose

le rend observable

Column {

Text("Valeur : $compteur")

Button(onClick = { viewModel.incrementer() }) {

Text("Cliquez")

}

}

}

Ici, viewModel() va par défaut fournir une instance de MonViewModel en se basant sur le
ViewModelStoreOwner courant (l’activité hôte par défaut, ou la NavBackStackEntry si on est dans

NavHost). Cela veut dire que si plusieurs écrans utilisent le même MonViewModel, ils partageront la
même instance (ce qui peut être utile pour un état global). Attention : on ne peut pas scope un
ViewModel à une simple fonction composable non liée à une navigation ou une Activity . En gros,
il faut que Compose sache à quel “scope” de vie attacher le ViewModel (Activity, Fragment, Navigation
graph). Si vous appelez viewModel() dans une composable très profondément imbriquée, il utilisera
toujours l’Activity par défaut, sauf si vous êtes dans NavHost. Si vous voulez un ViewModel par écran de
NavHost, il est conseillé d’appeler val vm: MonViewModel = viewModel() à l’intérieur de la
lambda de composable{ } de NavHost, ainsi le ViewModel sera scoped à cette destination de
navigation.

Dans l’exemple ci-dessus, viewModel.compteur est de type Int (en fait mutableStateOf s’utilise
comme un State ici). Compose va observer ce compteur pour recomposer CompeurScreen dès qu’il
change. Ainsi, quand on appelle viewModel.incrementer() , la valeur augmente et l’UI se met à
jour automatiquement.

44

14

https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=When%20using%20Jetpack%20Compose%2C%20ViewModel,more%20active%20as%20UI%20controllers

Avantages du ViewModel : - Il survit aux rotations et recréations d’activité (contrairement aux variables
stockées directement dans une composable sans rememberSaveable). Si l’utilisateur tourne l’écran, le
ViewModel n’est pas recréé, donc compteur gardera sa valeur et on n’aura pas de reset à 0 . - Il
sépare les responsabilités : la UI ne fait que afficher et déléguer les actions, le ViewModel gère la
logique (calculer un score, valider une entrée, charger des données d’une base, etc.). Cela rend le code
plus testable et clair. - On peut partager un même ViewModel entre plusieurs écrans (par ex, un
ViewModel “Panier” accessible depuis l’écran liste produits et l’écran détail produit). - Le ViewModel peut
exposer l’état sous forme de LiveData ou Flow, que Compose peut observer via collectAsState()
ou observeAsState() . Cependant, pour de la simplicité on peut aussi utiliser des
mutableStateOf directement dans le ViewModel comme montré, ce qui évite d’introduire la notion

de LiveData.

Exemple concret : Si on reprend notre concept d’application de tâches (to-do list) : - On peut avoir un
TodoViewModel avec une liste de tâches en état (var tasks = mutableStateListOf<Tache>()

par exemple, ou un SnapshotStateList). - Le ViewModel fournirait des fonctions
ajouterTache(tache: Tache) , supprimerTache(tache) , etc., qui modifient la liste. - L’écran

Compose (la liste des tâches) récupérerait val tasks = todoViewModel.tasks et l’afficherait (voir
LazyColumn section suivante), et appellerait todoViewModel.ajouterTache(...) quand
l’utilisateur valide le formulaire d’ajout. Compose rendra la LazyColumn réactive à toute modification de
la liste (les SnapshotStateList émettent des recompositions sur changement).

Importer le ViewModel : Assurez-vous d’ajouter la dépendance
implementation("androidx.lifecycle:lifecycle-viewmodel-compose:X.Y.Z") (et

éventuellement lifecycle-runtime-ktx). Dans les derniers BOM Android, elle est souvent incluse.
Sans cela, la fonction viewModel() dans Compose pourrait ne pas être reconnue.

Conseils usage ViewModel en examen : - Ne perdez pas de temps inutile : Si votre application est très
simple (par ex, juste un écran formulaire+résultat), vous pouvez techniquement vous passer de
ViewModel en gérant l’état avec remember. Mais si la consigne de l’examen mentionne ou attend un
ViewModel, montrez-en un usage basique comme ci-dessus. C’est généralement bien vu de structurer
en MVVM même un petit projet. - Pas de contexte Android dans le VM : Rappelez-vous qu’un ViewModel
ne doit pas contenir de référence directe à UI ou contexte (pas d’Activity, pas de View). Il doit
uniquement manipuler des données. Compose permet parfois d’accéder à LocalContext , mais ne
passez pas ça à un ViewModel. Si vous avez besoin d’une ressource (ex: string), mieux vaut la injecter ou
l’exposer autrement. Cependant, pour un petit exam, ce point ne devrait pas trop se poser. - Nettoyage :
Un ViewModel peut implémenter onCleared() si des ressources doivent être libérées quand il est
détruit (ex: fermer une connexion). Dans un contexte 3h, c’est rare d’en avoir besoin. - Communication UI
<-> VM : Utilisez soit des fonctions du VM pour que l’UI lui envoie des événements (comme
incrementer()), soit modifiez directement les propriétés du VM si elles sont var publiques (mais c’est

moins encapsulé). L’approche idiomatique est de garder les propriétés en lecture seule et d’avoir des
méthodes dans le VM. - Observabilité : Si vous utilisez LiveData ou Flow dans le VM, Compose peut les
observer via collectAsState() . Mais on peut éviter cette couche pour un exam de base et utiliser
directly mutableStateOf comme montré.

En somme, ViewModel vous aidera à gérer l’état de manière robuste dans Compose. Pour notre besoin
(maîtriser une app en 3h), un seul ViewModel peut souvent suffire à gérer l’essentiel de l’état de
l’application (par ex, toutes les données de votre ToDo ou quiz). Vous centralisez ainsi la logique et vous
laissez l’UI Compose se rafraîchir en fonction. Cela réduit le risque de bugs lors des changements de
configuration et clarifie le code. On va maintenant appliquer tout cela pour créer des formulaires et des
listes dynamiques.

45 46

15

https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=The%20ViewModel%20%20class%20is,as%20when%20rotating%20the%20screen
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=The%20alternative%20to%20a%20ViewModel,persistence%20that%20resolves%20this%20issue

7. Création de formulaires simples (ex : login, inscription)

Les formulaires (écran de login, d’inscription, de saisie de données) sont un cas très courant et un bon
moyen de tester vos compétences Compose. Un formulaire typique comprend des champs de texte,
éventuellement des sélecteurs (checkbox, radio) et des boutons pour soumettre. Voyons comment
gérer cela en Compose pour un débutant.

Champs de texte (TextField / OutlinedTextField) : Compose fournit des composables pour la
saisie utilisateur. Le plus utilisé est TextField (style Material filled) et sa variante
OutlinedTextField (avec bordure). Ils nécessitent un paramètre principal pour le texte et un

lambda pour gérer la modification : - Ancienne approche (value/onValueChange) :

var email by remember { mutableStateOf("") }

OutlinedTextField(

value = email,

onValueChange = { email = it },

label = { Text("Email") }

)

Ici, on lie le contenu du champ email à une variable d’état locale. À chaque saisie (touche frappée),
Compose appelle onValueChange avec la nouvelle valeur et on met à jour notre état, ce qui
recompose le TextField avec le nouveau texte. Important : sans cet état, le TextField ne pourra pas être
édité (compose a besoin de la source de vérité).
- Nouvelle approche (Material3 1.4+ avec TextFieldState) : plus avancée, on peut utiliser
rememberTextFieldState() . Pour un exam, on peut rester sur l’approche classique value/

onValueChange qui est bien comprise.

Pour un champ de mot de passe, on veut masquer le texte saisi. On peut utiliser
visualTransformation = PasswordVisualTransformation() sur un OutlinedTextField pour

remplacer les caractères par des points. Exemple :

var password by remember { mutableStateOf("") }

OutlinedTextField(

value = password,

onValueChange = { password = it },

label = { Text("Mot de passe") },

visualTransformation = PasswordVisualTransformation(),

keyboardOptions = KeyboardOptions(keyboardType = KeyboardType.Password)

)

Ici on indique aussi au clavier virtuel qu’il s’agit d’un champ de mot de passe (ça peut changer l’affichage
de la touche de validation, etc.). On pourrait ajouter une icône à droite pour afficher/masquer le mot de
passe en jouant sur visualTransformation dynamique, mais c’est du bonus.

Boutons de soumission : Un formulaire a souvent un bouton "Valider" ou "Se connecter". Ce sera un
composable Button standard. Dans son onClick, on va vérifier les champs et agir en conséquence
(par exemple, envoyer une requête de login ou simplement naviguer vers un autre écran si c’est un
examen hors-ligne). Dans un contexte d’examen, vous pouvez simuler la validation de login (pas besoin

16

d’une vraie authentification). Par exemple, on peut afficher un Toast ou juste naviguer vers un écran
"Bienvenue".

Validation de champs : Pour un simple exam, on peut implémenter des validations basiques du style
“champ requis” ou “email doit contenir @”. Ceci peut se faire en ajustant l’état. Par exemple, on peut
avoir un état pour l’erreur et afficher un texte rouge si erreur. Par simplicité :

var errorMessage by remember { mutableStateOf("") }

Button(onClick = {

if (email.isBlank() || password.isBlank()) {

errorMessage = "Veuillez remplir tous les champs"

} else {

errorMessage = ""

// Poursuivre la logique de connexion

}

}) { Text("Connexion") }

if (errorMessage.isNotEmpty()) {

Text(errorMessage, color = Color.Red)

}

Ainsi l’erreur s’affiche dynamiquement si le bouton est pressé sans remplir les champs .

Exemple concret de formulaire de login : Un écran de login minimal en Compose pourrait ressembler
à ceci :

@Composable

fun LoginScreen(onLoginSuccess: () -> Unit) {

var email by remember { mutableStateOf("") }

var password by remember { mutableStateOf("") }

var error by remember { mutableStateOf("") }

Column(

modifier = Modifier

.fillMaxSize()

.padding(16.dp),

horizontalAlignment = Alignment.CenterHorizontally,

verticalArrangement = Arrangement.Center

) {

Text("Connexion", style = MaterialTheme.typography.headlineMedium)

Spacer(Modifier.height(24.dp))

OutlinedTextField(

value = email,

onValueChange = { email = it },

label = { Text("Email") },

modifier = Modifier.fillMaxWidth(),

singleLine = true,

keyboardOptions = KeyboardOptions(keyboardType =

KeyboardType.Email, imeAction = ImeAction.Next)

)

47

17

https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20for%20the%20below%20conditions,isNotEmpty

Spacer(Modifier.height(16.dp))

OutlinedTextField(

value = password,

onValueChange = { password = it },

label = { Text("Mot de passe") },

modifier = Modifier.fillMaxWidth(),

singleLine = true,

visualTransformation = PasswordVisualTransformation(),

keyboardOptions = KeyboardOptions(keyboardType =

KeyboardType.Password, imeAction = ImeAction.Done)

)

Spacer(Modifier.height(16.dp))

Button(

onClick = {

if (email.isBlank() || password.isBlank()) {

error = "Veuillez renseigner email et mot de passe"

} else {

// Ici, on pourrait vérifier la correspondance avec un

utilisateur fictif

error = ""

onLoginSuccess()

}

},

modifier = Modifier.fillMaxWidth()

) {

Text("Se connecter")

}

if (error.isNotEmpty()) {

Spacer(Modifier.height(8.dp))

Text(error, color = MaterialTheme.colorScheme.error)

}

}

}

Ce code met en œuvre les points clés : champs contrôlés par état, bouton avec validation et message
d’erreur. On utilise quelques KeyboardOptions pour améliorer l’UX (par exemple passer au champ
suivant automatiquement avec imeAction). Note: imeAction = ImeAction.Done permet de
customiser la touche Entrée du clavier (ici pour soumettre).

Capture d’écran d’un simple formulaire de connexion construit avec Compose, comportant deux champs
(OutlinedTextField pour le nom d’utilisateur et le mot de passe) et un bouton de validation .
L’interface est épurée : chaque champ affiche un label et le texte saisi, et le bouton “Login” permet de
soumettre le formulaire.

Une fois ce composant LoginScreen prêt, on peut l’intégrer dans la NavHost (ex: route "login") ou le
lancer comme écran principal. S’il y avait une navigation à faire après connexion, on appellerait
onLoginSuccess() pour naviguer vers l’écran suivant (par exemple :
navController.navigate("home")).

48 49

18

https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20Creating%20two%20outlined%20text,fillMaxWidth%28%29
https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20Adding%20a%20Spacer%20Spacer,dp

Autres entrées utilisateur courantes : - CheckBox: pour une case à cocher, utilisez
Checkbox(checked = valeur, onCheckedChange = { valeur = it }) avec un état booléen

via remember. - RadioButton: Compose propose RadioButton, généralement on les groupe via un Row/
Column. On garde un état pour la sélection (par ex. une variable choix: String) et on fait
RadioButton(selected = choix == "Option1", onClick = { choix = "Option1" }) . -

Switch: similaire à Checkbox, pour on/off.

Conseils formulaires en examen : - Gérez le focus du clavier : Compose gère automatiquement le
focus entre champs si vous utilisez ImeAction.Next comme dans l’exemple (il faut aussi un
keyboardActions = KeyboardActions(onNext = { focusManager.moveFocus(...) }) si on

veut le faire proprement). Pour un exam, ce n’est pas grave si l’utilisateur doit toucher le second champ
manuellement, concentrez-vous sur la fonctionnalité. - Limitez la validation : Par manque de temps,
faites des validations simples (champs requis). Si vous avez le temps, montrez-en une plus, par exemple
vérifier que l’email contient "@" ou que le mot de passe a une certaine longueur, mais ce n’est pas
prioritaire. - Accessibilité / ContentDescription : Indiquez des contentDescription sur les éléments non
textuels (icônes, images) surtout si critique. Ce niveau de détail est bien mais souvent optionnel dans un
contexte exam court. - Ne stockez pas le mot de passe en clair : bon, dans un exam local ce n’est pas
très grave, mais c’est une mauvaise pratique en vrai. Vous pourriez mentionner oralement ou dans un
commentaire que dans un vrai contexte, on ne ferait pas ça ainsi.

En maîtrisant les TextField et Buttons, vous pourrez réaliser d’autres formulaires comme une inscription
(pratiquement les mêmes éléments qu’un login, avec champs supplémentaires). Compose simplifie la
création de formulaires car tout est lié directement au state, ce qui évite d’écrire du code “retrouve
l’editText et lis sa valeur”.

8. Utilisation de listes (LazyColumn) avec données dynamiques

Afficher des listes de données est extrêmement fréquent (listes d’articles, de tâches, de messages...).
Avec Jetpack Compose, on utilise principalement LazyColumn (pour une liste verticale) ou LazyRow
(horizontale) pour afficher une collection d’éléments de façon performante. Lazy signifie que la liste est
rendue de manière paresseuse : seuls les éléments visibles à l’écran sont composés, ce qui assure de
bonnes performances même avec de longues listes .

LazyColumn de base : son utilisation rappelle le RecyclerView + Adapter d’autrefois, mais en beaucoup
plus simple. Exemple minimal :

val fruits = listOf("Banane", "Pomme", "Orange", "Kiwi")

LazyColumn {

items(fruits) { fruit ->

Text("Fruit : $fruit")

}

}

Ici, items(fruits) va itérer sur la liste et pour chaque élément appeler le contenu lambda en
passant l’élément (qu’on nomme ici fruit). Compose génère autant de Text que nécessaire pour
afficher les 4 fruits, et si la liste était très longue, il n’en créerait d’abord que suffisamment pour remplir
l’écran puis les suivants au scroll. Vous pouvez aussi spécifier un index si besoin en utilisant l’autre
signature itemsIndexed .

50 51

19

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Enrichissons,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=plusieurs%20messages,efficaces%20pour%20les%20longues%20listes

Performance : LazyColumn n’affiche que les items visibles, ce qui le rend très efficace pour de
longues listes (scroll infini, etc.) . Vous n’avez plus besoin de ViewHolder ou d’optimisation manuelle.
Compose recycle/détruit et crée les composables au fil du scroll automatiquement.

Gestion de données dynamiques : Si les données de la liste peuvent changer (par exemple on ajoute/
enlève des éléments), utilisez de préférence une collection State comme SnapshotStateList. Si vous
faites val maListe = remember { mutableStateListOf(1,2,3) } , cette liste est observable :
ajouter ou retirer un élément déclenchera la recomposition de LazyColumn. Vous pouvez directement
passer items(maListe) et Compose détectera les changements (il compare les éléments via leur
key éventuellement). Pour assurer un bon suivi des modifications, surtout si vos éléments ne sont pas
uniques ou la liste peut bouger, il est recommandé de fournir un paramètre key à items. Par exemple,
si vous avez une data class Tache avec un champ id unique, faites
items(tasks, key = { it.id }) { ... } . Ainsi Compose saura mieux identifier chaque item

(utile pour animations ou juste performance de diff).

Exemple : liste de tâches : Supposons qu’on a un état dans le ViewModel : val tasks =

mutableStateListOf<Tache>() . On veut afficher la liste et pouvoir cocher/décocher les tâches. On
peut faire :

@Composable

fun TaskListScreen(viewModel: TodoViewModel = viewModel()) {

val tasks = viewModel.tasks // SnapshotStateList<Tache>

LazyColumn {

items(tasks, key = { it.id }) { task ->

Row(modifier = Modifier.fillMaxWidth().padding(8.dp),

verticalAlignment = Alignment.CenterVertically) {

Checkbox(

checked = task.fait,

onCheckedChange = { viewModel.toggleDone(task) }

)

Text(

text = task.titre,

style = if (task.fait) TextStyle(textDecoration =

TextDecoration.LineThrough) else TextStyle()

)

}

Divider()

}

}

// On pourrait ajouter un bouton flottant + (FloatingActionButton) pour

ajouter une tâche

}

Ici, chaque item de la LazyColumn est une Row contenant une Checkbox et un Text. La Checkbox
appelle viewModel.toggleDone(task) pour mettre à jour la tâche (par exemple inverser son
booléen fait). Grâce à la nature mutableStateList, cocher la case modifie la liste (ou l’élément) et
Compose recomposera cet item avec le nouveau état (le Text sera barré si fait = true). Remarque : il faut
que le fait de cocher modifie un State observé, or ici task.fait est une propriété d’un élément de la liste.
Dans un SnapshotStateList, si la data class n’est pas observable elle-même, il vaut mieux faire
tasks[index] = tasks[index].copy(fait = true) pour que Compose capte le changement.

52

20

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=match%20at%20L1294%20plusieurs%20messages,efficaces%20pour%20les%20longues%20listes

Ou déclarer Tache.fait comme var fait by mutableStateOf(false) à l’intérieur de la data class,
ce qui est possible. Pour un exam, vous pouvez simplifier en recréant la liste ou en émettant une
nouvelle liste, même si moins optimal.

Sectionnement, en-têtes, etc. : LazyColumn permet aussi d’insérer des séparateurs ou en-têtes. Vous
pouvez utiliser directement des composables hors de items, par exemple :

LazyColumn {

item { Text("Ma Liste de Fruits") } // un seul élément en-tête

items(fruits) { ... }

}

Ou intercaler des Divider() entre items comme dans l’exemple ci-dessus.

Scrolling : Par défaut, LazyColumn est scrollable. Vous pouvez modifier son comportement avec des
paramètres (par ex. verticalArrangement pour l’espacement entre items, etc.). Si la liste est à
l’intérieur d’un autre composant scrollable, attention à la nested scrolling (un LazyColumn dans un
Column scrollable peut poser problème, il vaut mieux éviter deux scroll vertical imbriqués).

Affichage conditionnel d’une liste vide : Si votre liste peut être vide, prévoyez un petit if avant la
LazyColumn :

if (tasks.isEmpty()) {

Text("Aucune tâche pour le moment", modifier = Modifier.padding(16.dp))

} else {

LazyColumn { items(tasks) { ... } }

}

Histoire d’informer l’utilisateur quand il n’y a rien.

Optimisation : Compose gère beaucoup de choses automatiquement. Cependant, pour d’énormes
listes, vous pouvez activer la pagination ou le chargement à la volée. Dans un contexte de 3h, c’est peu
probable qu’on vous demande ça. Mentionnez simplement que LazyColumn ne charge que les éléments
visibles , ce qui suffit souvent.

Conseils pour les listes en examen : - Mock data : Si nécessaire, créez des données factices pour
démontrer la liste (ex: une liste de 10 tâches en dur). Ne perdez pas trop de temps à faire un système
d’ajout complet si ce n’est pas demandé – sauf si le sujet l’implique (par ex, “faire une liste où l’utilisateur
peut ajouter des éléments”). - Scrollable Column vs LazyColumn : Si la liste a très peu d’éléments fixes,
vous pourriez être tenté d’utiliser une Column simple avec .verticalScroll() . Mais montrez que
vous savez utiliser LazyColumn, car c’est la bonne pratique dès qu’on a du contenu en liste, même
modeste. - UI des items : personnalisez un minimum l’affichage de chaque item pour montrer que vous
savez combiner composables (comme l’exemple avec Checkbox + Text). Si c’est une liste d’objets plus
complexes, n’hésitez pas à créer un composable dédié pour l’item (ex: @Composable fun

TacheItem(task: Tache) { ... }) et l’appeler dans items:
items(tasks) { TacheItem(it) } . Cela améliore la lisibilité. - Performance note : vous pouvez

mentionner que c’est plus besoin de ViewHolder, etc. Mais dans le code c’est déjà évident.

50

21

https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Enrichissons,efficaces%20pour%20les%20longues%20listes

Avec LazyColumn, afficher un ensemble dynamique devient aisé. Compose s’occupe du recyclage et du
diff. Vous, vous décrivez juste comment rendre un item. Ce sera particulièrement utile dans l’application
complète qu’on va envisager (ToDo, quiz, notes – toutes ont des listes).

9. Stockage local de données avec Room (introduction simple)

Certaines applications nécessitent de stocker des données localement sur l’appareil de l’utilisateur,
par exemple une liste de notes ou de tâches qui persiste entre les lancements de l’application. Android
propose la base de données SQLite en natif, mais le framework Room (bibliothèque Jetpack) facilite
grandement son utilisation en offrant une couche d’abstraction et des DAO (Data Access Object)
puissants. Vu le temps imparti de 3h, il est possible que l’intégration complète de Room soit un peu
ambitieuse, mais une courte introduction ne fait pas de mal et peut impressionner positivement si bien
gérée.

Principe de Room : Room est une surcouche de SQLite qui utilise la réflexion et les annotations pour
générer le code de base de données. Les éléments principaux sont : - Une classe de base de
données (annotée @Database) qui étend RoomDatabase . Elle définit les entités (tables) qu’elle
contient et offre des méthodes d’accès (DAO). - Des entités (annotées @Entity) qui représentent les
tables de la base, généralement ce sont des data classes Kotlin. Chaque propriété correspond à une
colonne. Il faut une clé primaire (annotée @PrimaryKey) et on peut spécifier des infos de colonnes
(nom, index, etc.) . - Des DAO (interfaces annotées @Dao) qui contiennent les méthodes pour
interagir avec la base (requêtes SQL via @Query , insertion via @Insert , mise à jour via @Update ,
suppression via @Delete) . Room génère automatiquement l’implémentation de ces
interfaces.

Exemple minimal : Supposons une application de notes. On peut créer une entité Note :

@Entity

data class Note(

@PrimaryKey(autoGenerate = true) val id: Int = 0,

val contenu: String,

val date: Long

)

Ici id sera la clé primaire auto-générée (0 signifie que Room la remplira à l’insertion). Ensuite un DAO :

@Dao

interface NoteDao {

@Query("SELECT * FROM Note")

fun getAll(): List<Note>

@Insert

fun insert(note: Note)

@Delete

fun delete(note: Note)

}

53

54

55 56

22

https://developer.android.com/training/data-storage/room#:~:text=There%20are%20three%20major%20components,in%20Room
https://developer.android.com/training/data-storage/room#:~:text=The%20following%20code%20defines%20a,table%20in%20the%20app%27s%20database
https://developer.android.com/training/data-storage/room#:~:text=%40Dao%20interface%20UserDao%20%7B%20%40Query%28,fun%20getAll%28%29%3A%20List%3CUser
https://developer.android.com/training/data-storage/room#:~:text=%40Query%28,User

Enfin la classe database :

@Database(entities = [Note::class], version = 1)

abstract class AppDatabase : RoomDatabase() {

abstract fun noteDao(): NoteDao

}

Pour utiliser cette base, il faut créer une instance de AppDatabase. Room fournit une méthode builder :

val db = Room.databaseBuilder(context, AppDatabase::class.java, "ma-

database.db").build()

val noteDao = db.noteDao()

On peut ensuite appeler noteDao.getAll() pour récupérer les notes, mais attention, cela doit se
faire en dehors du thread principal (Room force l’appel en asynchrone pour les queries longues). En
pratique, on utiliserait des coroutines (suspend functions) ou LiveData/Flow pour ne pas bloquer l’UI.

Dans un examen court, on ne vous en voudra pas de simplifier (par ex, appeler sur un thread IO ou
simuler l’opération). L’important est de montrer la structure.

Intégration avec Compose/ViewModel : Le ViewModel peut contenir le noteDao ou mieux, le
référencer via un Repository. On peut appeler getAll() dans init du ViewModel pour peupler un état
initial des notes. Ou utiliser un Flow et collectAsState en Compose. Cela commence à faire beaucoup
de choses à mettre en place en 3h, donc il faut jauger. Si l’exam attend explicitement Room, vous pouvez
préparer du code ou le pseudo-code comme ci-dessus.

Conseils de simplification pour l'exam : - Vous pouvez limiter l’implémentation. Par exemple, juste
démontrer la création de l’entité et du DAO sans forcément utiliser effectivement la DB dans l’app, mais
en expliquant que dans un vrai contexte on ferait noteDao.insert(note) quand l’utilisateur ajoute une
note. - Ou alors, utiliser Room seulement pour stocker une petite info (par ex. les tâches) et montrer une
requête simple.

Quand persister les données : Si l’application le justifie (ToDo, notes), c’est bien de sauvegarder en
base pour retrouver les données au redémarrage. Dans le cadre de l’examen, on ne pourra sans doute
pas démontrer la persistance sur plusieurs lancements (sauf si examinateur teste l’app après
fermeture). Mais mentionner la persistance est un plus théorique.

Room et threads : Rappel : par défaut, les méthodes DAO ne sont pas suspendues, donc il faut les
appeler dans un CoroutineScope(Dispatchers.IO) . Si on utilise Flow (en mettant
@Query("SELECT * FROM Note") fun getAll(): Flow<List<Note>>), Room gère

l’asynchronisme automatiquement et on collectera dans Compose. Ce niveau de détail peut être omis si
c’est trop.

Conseils en examen pour Room : - Ne vous embourbez pas dans la config : ajouter Room nécessite
souvent d’ajouter le plugin KSP ou annotationProcessor. Si vous ne l’avez jamais fait, faites-y attention.
Ex: dans gradle, ajouter ksp("androidx.room:room-compiler:2.x.x") . Sans cette configuration,
Room ne générera rien et vous aurez des erreurs. Il faut aussi
implementation("androidx.room:room-ktx:2.x.x") et runtime. - Plan B : Si Room pose

23

problème, mentionnez dans votre rapport comment vous auriez stocké les données. Montrez l’entité et
dites “faute de temps, l’implémentation d’insertion n’a pas été finalisée, mais la structure Room est en
place”. Mieux vaut ça que de tout casser. - Ne pas bloquer l’UI : Si vous appelez une query directement,
l’app pourrait crasher (Room jette une exception si appel sur main thread). Si vous n’avez pas le temps
de mettre en place coroutines, vous pouvez temporairement autoriser mainThread queries avec
.allowMainThreadQueries() sur le builder Room (à n’utiliser qu’en debug !). C’est sale en prod,

mais toléré en contexte d’apprentissage pour tester . Vous pourriez justifier cela par le contexte
restreint de l’examen.

TL;DR Room : 3 annotations principales (@Entity, @Dao, @Database) et votre base est prête à l’emploi
sans écrire de SQL vous-même. Par exemple, l’image ci-dessous illustre l’architecture de Room : la classe
Database donne accès aux DAO, qui eux permettent de faire des requêtes sur les tables entités .

(Pas de capture d’écran ici pour Room car c’est conceptuel, mais vous pouvez imaginer un schéma avec
l’AppDatabase, le DAO et l’entité.)

10. Exemple d'application complète réalisable en 3 heures

Pour conclure, mettons tout ensemble dans un exemple concret d’application qu’on pourrait réaliser
en environ 3 heures de code : une application de gestion de tâches (ToDo app) simple. C’est un choix
judicieux car elle combine plusieurs concepts que nous avons vus : un écran avec une liste de tâches
(LazyColumn), la possibilité d’ajouter une tâche via un formulaire (TextField + Button), de marquer des
tâches comme effectuées (gestion d’état + interactions), et la persistance locale (on peut y intégrer
Room pour sauvegarder les tâches).

Remarque : Vous pourriez tout aussi bien implémenter une mini app de quiz (écrans enchaînés avec
Navigation et calcul de score) ou une app de notes. Nous détaillons l’exemple ToDo, mais les autres
suivent des schémas similaires en utilisant les mêmes briques.

Fonctionnalités de la ToDo App : - Afficher la liste des tâches existantes (avec leur statut fait / pas fait).
- Permettre d’ajouter une nouvelle tâche via un champ de texte et un bouton “Ajouter”. - Optionnel :
Permettre de supprimer une tâche ou de la marquer terminée (par un checkbox). - L’UI se met à jour en
temps réel quand on ajoute/termine une tâche. - Bonus si le temps : stocker la liste dans une base
Room pour la retrouver à la relance de l’app.

Structure générale : On aura deux écrans principaux : 1. TaskListScreen – l’écran d’accueil affichant la
liste des tâches et un bouton pour aller à l’écran d’ajout. 2. AddTaskScreen – un écran avec un champ
texte pour la description de la tâche et un bouton de validation. (On pourrait aussi faire ce formulaire
d’ajout en bas de la liste sur le même écran pour simplifier, mais utilisons la navigation pour
démonstration).

On utilisera Navigation Compose pour passer de l’un à l’autre, et un ViewModel (TodoViewModel) pour
conserver la liste des tâches et gérer les opérations.

Data model : une data class Tache(val id: Int, val titre: String, val fait: Boolean =
false) . Si on intègre Room, on lui mettrait @Entity et @PrimaryKey. Sinon, on la traite en mémoire
seulement.

ViewModel :

57

58 59

24

https://developer.android.com/training/data-storage/room#:~:text=Setup
https://developer.android.com/training/data-storage/room#:~:text=,delete%20data%20in%20the%20database
https://developer.android.com/training/data-storage/room#:~:text=the%20different%20components%20of%20Room

class TodoViewModel : ViewModel() {

private var nextId = 0 // pour auto-incrémenter les ids en cas de non-

Room

var tasks = mutableStateListOf<Tache>()

private set

fun ajouterTache(titre: String) {

if (titre.isBlank()) return

tasks.add(Tache(id = nextId++, titre = titre, fait = false))

}

fun toggleDone(task: Tache) {

val index = tasks.indexOf(task)

if (index >= 0) {

val ancienne = tasks[index]

tasks[index] = ancienne.copy(fait = !ancienne.fait)

}

}

fun supprimerTache(task: Tache) {

tasks.remove(task)

}

}

Ici, on gère une liste mutable d’état (SnapshotStateList). ajouterTache crée une nouvelle tâche avec
un ID unique et l’ajoute. toggleDone remplace la tâche par une copie inversant le booléen fait (cette
opération notifie Compose que l’item a changé). supprimerTache enlève l’élément. Si on utilisait
Room, ces méthodes appelleraient en plus le DAO correspondant (dao.insert , dao.update …).
Mais on peut le faire plus tard.

On crée une instance de ce ViewModel au niveau du NavHost ou de l’activité (via
val todoViewModel: TodoViewModel = viewModel()).

Navigation : Deux routes : "liste" et "ajout". Dans NavHost :

NavHost(navController, startDestination = "liste") {

composable("liste") {

TaskListScreen(

tasks = todoViewModel.tasks,

onToggle = { todoViewModel.toggleDone(it) },

onDelete = { todoViewModel.supprimerTache(it) },

onNavigateToAdd = { navController.navigate("ajout") }

)

}

composable("ajout") {

AddTaskScreen(

onAdd = { titre ->

todoViewModel.ajouterTache(titre)

navController.popBackStack() // revenir à l'écran liste

25

},

onCancel = { navController.popBackStack() }

)

}

}

On injecte le viewModel ou ses données dans les écrans via les lambdas. On pourrait aussi obtenir
TodoViewModel dans chaque écran avec val todoViewModel =
viewModel(LocalContext.current as ComponentActivity) mais passons par paramètres pour
plus de clarté.

UI TaskListScreen :

@Composable

fun TaskListScreen(

tasks: List<Tache>,

onToggle: (Tache) -> Unit,

onDelete: (Tache) -> Unit,

onNavigateToAdd: () -> Unit

) {

Scaffold(

topBar = { TopAppBar(title = { Text("Mes Tâches") }) },

floatingActionButton = {

FloatingActionButton(onClick = onNavigateToAdd) {

Icon(Icons.Default.Add, contentDescription = "Ajouter")

}

}

) { padding ->

if (tasks.isEmpty()) {

Box(modifier = Modifier.fillMaxSize().padding(padding),

contentAlignment = Alignment.Center) {

Text("Aucune tâche. Cliquez sur + pour en ajouter.")

}

} else {

LazyColumn(modifier = Modifier.padding(padding)) {

items(tasks, key = { it.id }) { task ->

Row(modifier = Modifier

.fillMaxWidth()

.padding(8.dp),

verticalAlignment = Alignment.CenterVertically

) {

Checkbox(checked = task.fait, onCheckedChange = {

onToggle(task) })

Text(

text = task.titre,

modifier = Modifier.weight(1f).padding(start =

8.dp),

style = if (task.fait) TextStyle(textDecoration

= TextDecoration.LineThrough) else TextStyle()

)

26

IconButton(onClick = { onDelete(task) }) {

Icon(Icons.Default.Delete, contentDescription =

"Supprimer")

}

}

Divider()

}

}

}

}

}

Explications : On utilise un Scaffold qui offre un design de base avec une TopAppBar (titre) et un
FloatingActionButton. Le FAB appelle onNavigateToAdd pour aller à l’écran d’ajout. Dans le corps, on
affiche soit un message de liste vide, soit la LazyColumn des tâches. Chaque ligne affiche une Checkbox
(coche ou décoche via onToggle), le titre de la tâche (avec style barré si terminée), et une icône de
poubelle pour supprimer la tâche. On a ajouté une petite marge et on utilise Modifier.weight(1f)
sur le texte pour qu’il prenne l’espace disponible entre la checkbox et l’icône de suppression. On sépare
chaque item par un Divider pour l’esthétique.

Cette UI doit se rafraîchir automatiquement quand tasks change, car tasks est une
SnapshotStateList observable. Comme on passe tasks: List<Tache> en param, Compose va sous
le capot convertir cela en State<List<Tache>> si c’est un état (ce qui est le cas). Ainsi, cocher une case
modifie tasks et la LazyColumn se recomposera sur l’item modifié.

UI AddTaskScreen :

@Composable

fun AddTaskScreen(onAdd: (String) -> Unit, onCancel: () -> Unit) {

var texte by remember { mutableStateOf("") }

Column(modifier = Modifier.fillMaxSize().padding(16.dp)) {

Text("Nouvelle tâche", style =

MaterialTheme.typography.headlineSmall)

OutlinedTextField(

value = texte,

onValueChange = { texte = it },

label = { Text("Intitulé de la tâche") },

modifier = Modifier.fillMaxWidth().padding(vertical = 16.dp)

)

Row {

Button(onClick = { onCancel() }, modifier = Modifier.weight(1f))

{

Text("Annuler")

}

Spacer(Modifier.width(8.dp))

Button(onClick = {

onAdd(texte)

}, modifier = Modifier.weight(1f)) {

Text("Ajouter")

}

27

}

}

}

C’est un écran très simple : un champ pour le titre de la tâche (contrôlé par texte state), et deux
boutons côte à côte pour Annuler et Ajouter. En cliquant Ajouter, on appelle onAdd(texte) qui,
rappelez-vous, dans NavHost est relié à todoViewModel.ajouterTache(texte) puis
popBackStack (retour à la liste). Astuces UX : on pourrait désactiver le bouton Ajouter si texte est

vide pour éviter les tâches sans nom (via enabled = texte.isNotBlank() sur le Button), ou
nettoyer le champ après ajout (ici on ne revient pas sur cet écran donc pas crucial). On pourrait aussi
gérer le clavier (cacher le clavier au retour), mais pas nécessairement dans le temps imparti.

Test du flux complet : - L’application démarre sur TaskListScreen. Au début, la liste est vide, donc un
message invite à ajouter. - L’utilisateur clique le FAB (+). NavController navigue vers AddTaskScreen. - Il
entre un titre et appuie “Ajouter”. Cela déclenche todoViewModel.ajouterTache(titre) et revient
à TaskListScreen. - TaskListScreen se recompose car la liste dans le ViewModel a changé (1 tâche
ajoutée). La tâche apparaît dans la LazyColumn. - L’utilisateur coche la checkbox : onToggle appelle
viewModel.toggleDone -> modifie la liste. Compose met à jour l’UI, le texte se barre. - Il ajoute d’autres
tâches etc., éventuellement supprime via la corbeille. - Si on avait la persistance Room, on aurait
initialisé tasks depuis la DB et mis à jour la DB dans chaque opération. Sans Room, les données sont
en mémoire et perdues si on tue l’app, mais c’est acceptable pour un test rapide.

Ce qui est réalisable en ~3h : Ce projet ToDo est d’ampleur réduite mais couvre nos 10 points : 1. Kotlin
de base : utilisation de data class, listes, variables. 2. Android Studio/projet : on a créé un projet
Compose. 3. Compose UI fondamentaux : Text, Row, Column, Button, Icon, Checkbox, etc. utilisés. 4.
Navigation : NavHost avec deux écrans, usage de navController.navigate et popBackStack. 5. État
remember/mutableStateOf : on s’en sert pour le champ texte, et dans ViewModel on utilise
SnapshotStateList. 6. ViewModel : TodoViewModel gère l’état de l’app. 7. Formulaire : AddTaskScreen est
un mini formulaire avec champ et boutons. 8. Liste LazyColumn : TaskListScreen affiche LazyColumn de
tâches avec items dynamiques. 9. Room : on a montré comment on l’intégrerait (on peut ajouter, en
imagination, l’annotation @Entity sur Tache, etc.). 10. Exemple complet : c’est bien notre ToDo app en
entier.

Conseils finaux pour réussir un projet rapide lors d’un examen :

Priorisez les fonctionnalités : commencez par mettre en place la structure (écrans + navigation
+ ViewModel) et une fonctionnalité de base qui marche (par ex., ajouter et lister des éléments).
Assurez-vous d’avoir quelque chose de fonctionnel le plus tôt possible, puis itérez pour ajouter
des détails (cases à cocher, suppression, validation de formulaire, etc.). Cela vous évite de vous
retrouver avec un squelette non fonctionnel par manque de temps.
Utilisez le debugger et l’aperçu : En Compose, l’aperçu est votre ami pour l’UI, et vous pouvez
utiliser Logcat ou des Log.d() pour voir ce qui se passe sur des actions (par exemple logguer
le contenu de la liste après un ajout) afin de vérifier la logique rapidement.
Ne restez pas bloqué : Si une partie vous prend trop de temps (ex: configuration de Room, un
bug de navigation), envisagez de la contourner temporairement (stocker en mémoire plutôt
qu’en DB, utiliser une variable globale en secours, etc.) afin de présenter une application qui
tourne. Vous pourrez expliquer que “faute de temps, la persistance n’est pas implémentée, mais
le reste fonctionne”.
S’appuyer sur les docs/exemples : Durant la préparation, n’hésitez pas à avoir sous la main
quelques extraits courants (pattern NavHost, instantiation Room, etc.). Cela n’est pas de la triche,

•

•

•

•

28

c’est de l’efficacité. En examen en conditions réelles, vous auriez accès à la documentation
(souvent on l’autorise pour code, ou au moins les docs officielles).
Soin de l’UI minimale : Compose facilite la mise en page, donc essayez d’aligner correctement
vos éléments, de mettre des espacements (Spacer , padding) pour une UI propre. Même si
le design n’est pas l’objectif principal, une app bien présentée fait meilleure impression. Le
MaterialTheme par défaut donne déjà un style correct, utilisez-le (comme nos TopAppBar et
FloatingActionButton).
Tests rapides : Prenez le temps de tester les cas limites de votre appli : ajouter rien (devrait être
ignoré ou message d’erreur), cocher/décocher plusieurs fois, supprimer la première tâche, etc.
Corrigez les petites erreurs (par ex., j’ai fait attention dans toggleDone à créer une nouvelle
instance de tâche pour notifier Compose).
Commentaires et explications : En situation d’examen, commentez votre code pour montrer
que vous comprenez ce que vous faites. Par exemple, un petit commentaire // Utilisation
de remember pour conserver le texte saisi pendant la recomposition ou //
Navigation vers l'écran d'ajout lorsque l'utilisateur clique sur le FAB .
Cela prouve au correcteur que ce n’est pas du code cargo-cult mais bien réfléchi.

En suivant ces conseils et en s’appuyant sur tout ce qu’on a vu (Kotlin, Compose, Architecture MVVM
basique, etc.), vous devriez être capable de livrer une application Android simple mais complète en 3
heures. Bonne programmation et n’oubliez pas de respirer : Compose est là pour vous simplifier la vie,
faites-lui confiance .

•

•

•

29

Introduction à Kotlin pour Android
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/

Learn the Kotlin programming language | Android Developers
https://developer.android.com/kotlin/learn

Basic syntax | Kotlin Documentation
https://kotlinlang.org/docs/basic-syntax.html

| App architecture - Android Developers
https://developer.android.com/guide/topics/manifest/activity-element

Activity Declaration in AndroidManifest.xml - Stack Overflow
https://stackoverflow.com/questions/19122386/activity-declaration-in-androidmanifest-xml

Tutoriel
Android Compose | Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/tutorial?hl=fr

Android Compose Tutorial | Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/tutorial

Navigate between screens with Compose | Android Developers
https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation

Navigation with Compose | Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/navigation

ViewModel overview | App architecture | Android Developers
https://developer.android.com/topic/libraries/architecture/viewmodel

How to Validate TextFields in a Login Form in Android using Jetpack Compose? -
GeeksforGeeks
https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/

Save data in a local database using Room | App data and files | Android
Developers
https://developer.android.com/training/data-storage/room

1 4 5 8 9 12 14

2 3 6 7

10 11 13

15

16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 33 34 37 38 39 40 41 42 50 51 52

31 32

35

36

43 44 45 46

47 48 49

53 54 55 56 57 58 59

30

http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Il%20a%20l%E2%80%99avantage%20d%E2%80%99%C3%AAtre%20interop%C3%A9rable,un%20projet%20Java%20en%20Kotlin
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Le%20mot%20cl%C3%A9%20,assignable
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=Le%20mot%20cl%C3%A9%20,d%C3%A9finitive%20comme%20final%20de%20Java
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=val%20x%3A%20Int%20%3D%20null
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=,d%C3%A9structur%C3%A9es%20de%20l%E2%80%99objet%20par%20exemple
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/#:~:text=val%20list%20%3D%20listOf,12%2C%2014%2C%2016%2C%2018%2C%2020
http://blog.ippon.fr/2017/12/11/introduction-a-kotlin-pour-android/
https://developer.android.com/kotlin/learn#:~:text=Kotlin%20uses%20two%20different%20keywords,var
https://developer.android.com/kotlin/learn#:~:text=The%20,15
https://developer.android.com/kotlin/learn#:~:text=Some%20values%20are%20not%20meant,keyword
https://developer.android.com/kotlin/learn#:~:text=Type%20inference
https://developer.android.com/kotlin/learn
https://kotlinlang.org/docs/basic-syntax.html#:~:text=A%20function%20with%20two%20,return%20type
https://kotlinlang.org/docs/basic-syntax.html#:~:text=Properties%20of%20a%20class%20can,in%20its%20declaration%20or%20body
https://kotlinlang.org/docs/basic-syntax.html#:~:text=fun%20main%28%29%20,%2F%2FsampleEnd
https://kotlinlang.org/docs/basic-syntax.html
https://developer.android.com/guide/topics/manifest/activity-element#:~:text=%3Cactivity%3E%20%7C%20App%20architecture%20,the%20system%20and%20never%20run
https://developer.android.com/guide/topics/manifest/activity-element
https://stackoverflow.com/questions/19122386/activity-declaration-in-androidmanifest-xml#:~:text=Overflow%20stackoverflow,app%20to%20the%20Android%20system
https://stackoverflow.com/questions/19122386/activity-declaration-in-androidmanifest-xml
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Recr%C3%A9er%20votre%20projet.%20L%27application%20elle,haut%20de%20la%20fen%C3%AAtre%20d%27aper%C3%A7u
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Image
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Jetpack%C2%A0Compose%20est%20un%20kit%20d%27outils,des%20API%20en%20Kotlin%20intuitives
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Tout%20d%27abord%2C%20affichez%20un%20message,qu%27%C3%A0%20partir%20d%27autres%20fonctions%20modulables
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=class%20MainActivity%20%3A%20ComponentActivity%28%29%20,%7D%20%7D
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%40Composable%20fun%20MessageCard%28msg%3A%20Message%29%20,
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Row%28modifier%20%3D%20Modifier,primary%2C%20CircleShape
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20keep%20track%20if,mutableStateOf%28false%29
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=contentDescription%20%3D%20null%2C%20modifier%20%3D,dp
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=color%20%3D%20MaterialTheme,titleSmall
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=fun%20MessageCard%28msg%3A%20Message%29%20,primary
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20keep%20track%20if,mutableStateOf%28false%29
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=La%20structure%20de%20votre%20message,am%C3%A9liorer%20la%20mise%20en%20page
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%40Composable%20fun%20MessageCard%28name%3A%20String%29%20,
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Une%20discussion%20compos%C3%A9e%20d%27un%20seul,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=import%20androidx
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Les%20fonctions%20modulables%20peuvent%20stocker,ce%20qu%27on%20appelle%20la%20recomposition
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Remarque%3AVous%20devez%20ajouter%20les%20importations,setValue
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=%2F%2F%20We%20toggle%20the%20isExpanded,titleSmall
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Configurez%20maintenant%20la%20modification%20de,taille%20du%20conteneur%20de%20messages
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=Enrichissons,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=plusieurs%20messages,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr#:~:text=match%20at%20L1294%20plusieurs%20messages,efficaces%20pour%20les%20longues%20listes
https://developer.android.com/develop/ui/compose/tutorial?hl=fr
https://developer.android.com/develop/ui/compose/tutorial#:~:text=Note%3A%20the%20Empty%20Compose%20Activity,subpackage
https://developer.android.com/develop/ui/compose/tutorial#:~:text=class%20MainActivity%20%3A%20ComponentActivity%28%29%20,%7D
https://developer.android.com/develop/ui/compose/tutorial
https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation#:~:text=,container%20for%20displaying%20the%20current
https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation
https://developer.android.com/develop/ui/compose/navigation#:~:text=,the%20navigation%20graph%20are%20composables
https://developer.android.com/develop/ui/compose/navigation
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=,provides%20access%20to%20business%20logic
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=When%20using%20Jetpack%20Compose%2C%20ViewModel,more%20active%20as%20UI%20controllers
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=The%20ViewModel%20%20class%20is,as%20when%20rotating%20the%20screen
https://developer.android.com/topic/libraries/architecture/viewmodel#:~:text=The%20alternative%20to%20a%20ViewModel,persistence%20that%20resolves%20this%20issue
https://developer.android.com/topic/libraries/architecture/viewmodel
https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20for%20the%20below%20conditions,isNotEmpty
https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20Creating%20two%20outlined%20text,fillMaxWidth%28%29
https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/#:~:text=%2F%2F%20Adding%20a%20Spacer%20Spacer,dp
https://www.geeksforgeeks.org/how-to-validate-textfields-in-a-login-form-in-android-using-jetpack-compose/
https://developer.android.com/training/data-storage/room#:~:text=There%20are%20three%20major%20components,in%20Room
https://developer.android.com/training/data-storage/room#:~:text=The%20following%20code%20defines%20a,table%20in%20the%20app%27s%20database
https://developer.android.com/training/data-storage/room#:~:text=%40Dao%20interface%20UserDao%20%7B%20%40Query%28,fun%20getAll%28%29%3A%20List%3CUser
https://developer.android.com/training/data-storage/room#:~:text=%40Query%28,User
https://developer.android.com/training/data-storage/room#:~:text=Setup
https://developer.android.com/training/data-storage/room#:~:text=,delete%20data%20in%20the%20database
https://developer.android.com/training/data-storage/room#:~:text=the%20different%20components%20of%20Room
https://developer.android.com/training/data-storage/room

	Cours de développement Android avec Kotlin & Jetpack Compose (débutant)
	1. Introduction à Kotlin (variables, fonctions, classes, collections)
	Variables : var vs val
	Types de base et inférence de type
	Fonctions
	Classes et objets
	Collections (listes et autres)

	2. Introduction à Android Studio et à la structure d'un projet Android
	3. Fondamentaux de Jetpack Compose (Composable, Column, Row, Text, Button, etc.)
	4. Navigation entre écrans (Jetpack Navigation Compose)
	5. Gestion d'état avec remember et mutableStateOf
	6. Intégration de ViewModel (basique)
	7. Création de formulaires simples (ex : login, inscription)
	8. Utilisation de listes (LazyColumn) avec données dynamiques
	9. Stockage local de données avec Room (introduction simple)
	10. Exemple d'application complète réalisable en 3 heures

