
Documentation du projet de jeu de puzzle
(Android, Kotlin, Jetpack Compose)

Introduction

Ce document présente un jeu de puzzle Android développé en Kotlin avec Jetpack Compose. L’objectif de
ce projet est de proposer un petit jeu de puzzle (de type jigsaw puzzle) dont les pièces sont récupérées
dynamiquement depuis une API web en fonction d’une adresse email utilisateur et d’un niveau de difficulté
choisi. L’application illustre l’utilisation de Jetpack Compose pour construire une interface moderne sans
XML, en incluant un écran d’accueil animé et une interface de jeu interactive. Elle démontre également de
bonnes pratiques de développement avec Compose, telles que la navigation déclarative, la gestion d’état
et les effets de bord contrôlés.

Concrètement, le flux de l’application est le suivant : un écran d’accueil (SplashScreen) affiche le drapeau de
la Sierra Leone dessiné en Compose et une barre de chargement animée, avec un bouton permettant de
démarrer. Une fois le jeu lancé, l’écran principal (GameScreen) permet à l’utilisateur de saisir son email, de
sélectionner la difficulté (par exemple la taille du puzzle), puis de récupérer un puzzle depuis l’API
(PuzzleFetcher). Le puzzle est représenté par une image découpée en plusieurs pièces (Puzzle et JigsawPiece).
Ces pièces sont affichées mélangées sur une grille (Jigsaw), et le joueur doit les échanger pour reconstituer
l’image. La logique de permutation des pièces, la vérification des pièces bien placées (avec bordures
colorées) et la détection de la fin du jeu sont gérées par une classe dédiée (JigsawManager). L’interface
utilise Jetpack Compose Navigation pour passer de l’écran d’accueil au jeu, et exploite des composants
Composables réutilisables et sans état pour une meilleure maintenabilité.

Le document est structuré de façon pédagogique : chaque section correspond à un composant ou fichier
du projet, avec son code source complet, des explications claires et des commentaires en français. Les
bonnes pratiques utilisées (telles que LaunchedEffect , composables sans état, utilisation de
remember / mutableStateOf , etc.) sont soulignées au fil du texte et récapitulées en fin de document.

L’ensemble vise à guider un débutant pas à pas dans la compréhension du code et des concepts mis en
œuvre.

Sommaire

Introduction – Présentation du projet et de ses objectifs
MainActivity.kt – Mise en place de la navigation Compose
SplashScreen.kt – Écran d’accueil animé (drapeau de la Sierra Leone, barre de chargement, bouton
démarrer)
SierraFlag.kt – Composable dessinant le drapeau (exemple de dessin avec Canvas)
FillBar.kt – Composable de barre de progression animée avec pourcentage de remplissage
PuzzleFetcher.kt – Formulaire de récupération du puzzle (champ email, slider de difficulté, appel
réseau)
Puzzle.kt – Data class représentant le puzzle (métadonnées et pièces)

1.
2.
3.

4.
5.
6.

7.

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf

JigsawPiece.kt – Composable d’une pièce du puzzle (chargement d’image avec état de chargement)
Jigsaw.kt – Affichage de la grille de pièces du puzzle selon un ordre (permutation)
JigsawManager.kt – Logique du puzzle (gestion d’état, échanges de pièces, bordures, validation de
fin)
GameScreen.kt – Écran principal du jeu intégrant PuzzleFetcher et la grille du puzzle
Fichiers build.gradle – Configuration Gradle pour Jetpack Compose et la navigation
Bonnes pratiques appliquées – Récapitulatif des pratiques de développement utilisées
Conclusion – Synthèse et pistes d’amélioration

MainActivity.kt – Navigation avec Jetpack Compose

La classe MainActivity initialise l’interface Compose de l’application et définit la navigation entre les écrans
(SplashScreen et GameScreen). Grâce à Jetpack Compose Navigation, on peut déclarer un NavHost avec
des routes correspondant aux écrans de l’application. Dans ce projet, nous avons deux destinations :
"splash" pour l’écran d’accueil, et "game" pour l’écran du jeu. Le code suivant montre comment

l’ Activity utilise setContent pour définir le contenu de l’application en Compose, et configure le
NavController et le NavHost. Un thème Material enveloppe l’ensemble pour appliquer le style Material
Design par défaut.

package com.example.puzzlegame

import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.compose.material3.MaterialTheme

import androidx.compose.runtime.Composable

import androidx.compose.ui.platform.LocalContext

import androidx.navigation.compose.rememberNavController

import androidx.navigation.NavType

import androidx.navigation.compose.NavHost

import androidx.navigation.compose.composable

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

// Initialisation de la composante principale de l'application

setContent {

MaterialTheme {

// Création du contrôleur de navigation Compose

val navController = rememberNavController()

// Définition du graph de navigation avec deux destinations:

Splash et Game

NavHost(navController = navController, startDestination =

"splash") {

// Écran d'accueil (SplashScreen)

8.
9.

10.

11.
12.
13.
14.

2

composable(route = "splash") {

SplashScreen(

onStart = {

// Navigation vers l'écran de jeu lorsqu'on

appuie sur "Démarrer"

navController.navigate("game")

}

)

}

// Écran principal du jeu (GameScreen)

composable(route = "game") {

GameScreen()

}

}

}

}

}

}

Explications : Dans onCreate , au lieu d’utiliser un layout XML, on appelle setContent pour définir l’UI
en Compose. Le contenu est englobé dans MaterialTheme (ici on utilise le thème Material3 par défaut)
afin de bénéficier des styles Material Design. On crée ensuite un navController via
rememberNavController() . Le NavHost configure les routes de l’application : la route initiale
"splash" affiche le composable SplashScreen , et la route "game" affiche le composable
GameScreen . Le paramètre onStart passé à SplashScreen est une lambda qui utilise
navController.navigate("game") pour passer à l’écran du jeu lorsque l’utilisateur clique sur le

bouton démarrer. Ainsi, aucune transaction de fragment ou d’ Activity n’est requise : la navigation entre
écrans est déclarative et gérée par Compose Navigation.

SplashScreen.kt – Écran d’accueil animé

Le composant SplashScreen correspond à l’écran de démarrage de l’application. Son rôle est d’afficher une
animation d’introduction de manière ludique avant d’accéder au jeu. Dans notre cas, le SplashScreen
montre le drapeau de la Sierra Leone dessiné grâce à Compose, une barre de progression animée
simulant un chargement, et un bouton Commencer (ou Démarrer) pour passer à l’écran suivant. Ce
composable utilise un onStart passé en paramètre pour notifier l’activité ou le contrôleur de navigation
que l’utilisateur souhaite passer à la suite.

Le code ci-dessous illustre l’implémentation de SplashScreen . On y retrouve l’utilisation de
LaunchedEffect pour animer progressivement la barre de chargement. La barre (composable
FillBar) va de 0% à 100% en quelques secondes, puis le texte du bouton "Commencer" apparaît

pleinement (on pourrait choisir de n’afficher le bouton qu’après le chargement, selon le design souhaité).
L’utilisateur peut cliquer sur le bouton à tout moment pour appeler la lambda onStart et naviguer vers
l’écran de jeu.

3

package com.example.puzzlegame.ui

import androidx.compose.foundation.layout.*

import androidx.compose.material3.Button

import androidx.compose.material3.Text

import androidx.compose.runtime.*

import androidx.compose.ui.Alignment

import androidx.compose.ui.Modifier

import androidx.compose.ui.unit.dp

@Composable

fun SplashScreen(onStart: () -> Unit) {

// État local pour la progression de la barre (0.0f à 1.0f)

var progress by remember { mutableStateOf(0f) }

// Effet lancé une seule fois à l'entrée dans la Composition pour animer la

barre

LaunchedEffect(Unit) {

// Simulation d'un chargement progressif

for (i in 0..100) {

progress = i / 100f // met à jour la progression

kotlinx.coroutines.delay(20) // petite pause pour animer (20ms par

étape)

}

// Optionnel: on pourrait naviguer automatiquement après le chargement

si désiré

}

// Mise en page de l'écran d'accueil

Column(

modifier = Modifier

.fillMaxSize()

.padding(32.dp),

verticalArrangement = Arrangement.Center,

horizontalAlignment = Alignment.CenterHorizontally

) {

// Affiche le drapeau de la Sierra Leone

SierraFlag(modifier = Modifier.fillMaxWidth().padding(16.dp))

Spacer(modifier = Modifier.height(24.dp))

// Barre de progression animée avec le pourcentage

FillBar(progress = progress, modifier = Modifier.fillMaxWidth(0.8f))

Spacer(modifier = Modifier.height(48.dp))

// Bouton "Commencer" pour démarrer le jeu

Button(onClick = { onStart() }) {

Text("Commencer le puzzle")

}

4

}

}

Explications : On utilise une colonne (Column) centrée verticalement et horizontalement pour disposer
les éléments du SplashScreen. Le composable personnalisé SierraFlag est appelé pour dessiner le
drapeau (ce composant est détaillé dans la section suivante). Ensuite, FillBar est utilisé pour afficher
une barre de chargement dont la longueur est déterminée par la variable d’état progress . Grâce à
LaunchedEffect , cette variable est incrémentée progressivement de 0 à 1 sur une durée d’environ 2

secondes (100 * 20ms). L’effet LaunchedEffect permet de lancer une coroutine liée au cycle de vie du
composable afin d’exécuter ce type d’animation ou d’action asynchrone une fois à l’affichage . Enfin, un
bouton Material3 (Button) avec le texte "Commencer le puzzle" est affiché. Lorsque l’utilisateur clique
dessus, la lambda onStart() est exécutée, ce qui déclenchera la navigation vers l’écran de jeu (comme
configuré dans MainActivity).

Notons que le SplashScreen est stateless vis-à-vis de l’extérieur : il ne gère pas de navigation directement, il
se contente d’appeler onStart fourni par l’appelant. Il gère uniquement un état interne local
(progress) pour l’animation. Ce composant est ainsi réutilisable et facile à tester car il n’a pas de
dépendances externes directes, mis à part le callback de navigation.

SierraFlag.kt – Dessin du drapeau de la Sierra Leone

Le fichier SierraFlag.kt contient un composable qui dessine le drapeau de la Sierra Leone. C’est un exemple
de dessin simple avec Jetpack Compose, utilisant l’API Canvas pour dessiner des formes géométriques. Le
drapeau de la Sierra Leone se compose de trois bandes horizontales de tailles égales (verte en haut,
blanche au milieu, bleue en bas). Ce composable n’a pas d’état interne : il se contente de dessiner le
drapeau dans l’espace qui lui est alloué.

Voici le code source de SierraFlag :

package com.example.puzzlegame.ui

import androidx.compose.foundation.Canvas

import androidx.compose.runtime.Composable

import androidx.compose.ui.Modifier

import androidx.compose.ui.geometry.Size

import androidx.compose.ui.graphics.Color

import androidx.compose.ui.graphics.drawscope.drawRect

@Composable

fun SierraFlag(modifier: Modifier = Modifier) {

// Canvas permet de dessiner directement des formes

Canvas(modifier = modifier) {

// Calcul de la hauteur d'une bande (1/3 de la hauteur totale)

val stripeHeight = size.height / 3f

// Bande verte (en haut)

1

5

https://developer.android.com/develop/ui/compose/side-effects#:~:text=,the%20scope%20of%20a%20composable

drawRect(

color = Color(0xFF1EB53A), // vert (couleur hexadécimale

du drapeau)

size = Size(size.width, stripeHeight),// pleine largeur, 1/3 hauteur

topLeft = androidx.compose.ui.geometry.Offset(0f, 0f)

)

// Bande blanche (au milieu)

drawRect(

color = Color.White,

size = Size(size.width, stripeHeight),

topLeft = androidx.compose.ui.geometry.Offset(0f, stripeHeight)

)

// Bande bleue (en bas)

drawRect(

color = Color(0xFF0072C6), // bleu

size = Size(size.width, stripeHeight),

topLeft = androidx.compose.ui.geometry.Offset(0f, 2 * stripeHeight)

)

}

}

Explications : Le composable utilise Canvas de Compose pour dessiner directement sur une surface. À
l’intérieur du lambda de dessin, on utilise la taille disponible (size) pour calculer la hauteur de chaque
bande (un tiers de la hauteur totale). On appelle drawRect trois fois pour dessiner trois rectangles de la
largeur totale du canvas et de hauteur stripeHeight : le premier en vert (positionné à l’origine (0,0)),
le second en blanc (positionné à y = stripeHeight), et le dernier en bleu (positionné à y = 2 *
stripeHeight). Les couleurs utilisées correspondent aux couleurs officielles du drapeau de la Sierra
Leone. Ce composable est purement visuel et sans état : quel que soit l’écran ou le conteneur où on le
place, il dessinera toujours le même drapeau. Son Modifier peut être spécifié à l’appel pour ajuster sa
taille (par exemple, on l’a appelé dans le SplashScreen avec fillMaxWidth().height(...) pour qu’il
prenne la largeur de l’écran et une hauteur proportionnelle).

FillBar.kt – Barre de progression personnalisée avec texte

La composante FillBar réalise une barre de progression horizontale affichant en son centre le pourcentage
d’avancement. C’est un composable réutilisable qui prend en paramètre un niveau de progression
(progress) sous forme de Float (allant de 0.0 à 1.0). Ici, nous l’utilisons dans le SplashScreen pour
montrer une animation de chargement. La barre est dessinée de façon personnalisée pour illustrer la
flexibilité de Compose : on utilise deux Box imbriquées pour créer une barre grise en arrière-plan et une
barre colorée par-dessus dont la largeur dépend de la progression. Un texte est centré pour afficher le
pourcentage (arrondi à l’entier le plus proche).

package com.example.puzzlegame.ui

import androidx.compose.foundation.background

import androidx.compose.foundation.layout.*

6

import androidx.compose.foundation.shape.RoundedCornerShape

import androidx.compose.material3.MaterialTheme

import androidx.compose.material3.MaterialTheme.colorScheme

import androidx.compose.material3.MaterialTheme.typography

import androidx.compose.material3.Text

import androidx.compose.runtime.Composable

import androidx.compose.ui.Modifier

import androidx.compose.ui.graphics.Color

import androidx.compose.ui.unit.dp

@Composable

fun FillBar(progress: Float, modifier: Modifier = Modifier) {

// Contrainte pour que la valeur de progression soit entre 0 et 1

val clampedProgress = progress.coerceIn(0f, 1f)

// Conteneur de la barre (barre de fond grise arrondie)

Box(

modifier = modifier

.height(20.dp) // hauteur fixe de la barre

.background(color = Color.LightGray, shape =

RoundedCornerShape(10.dp))

) {

// Barre de remplissage colorée par-dessus, largeur proportionnelle à la

progression

Box(

modifier = Modifier

.fillMaxHeight()

.fillMaxWidth(fraction = clampedProgress) // fraction de la

largeur totale

.background(color = Color(0xFF0066CC), shape =

RoundedCornerShape(10.dp))

)

// Texte affichant le pourcentage (centré dans la Box par défaut)

Text(

text = "${(clampedProgress * 100).toInt()}%",

modifier = Modifier.align(Alignment.Center),

color = Color.White,

style = MaterialTheme.typography.bodySmall

)

}

}

Explications : La fonction FillBar utilise un Box principal qui sert de fond de barre (en gris clair, avec
des coins arrondis de rayon 10dp). À l’intérieur, un second Box représente la partie remplie de la barre : on
lui applique fillMaxWidth(fraction = progress) pour que sa largeur soit un pourcentage de la
largeur du parent, égal à la progression. Sa hauteur remplit la hauteur du parent (fillMaxHeight()) et il
a le même shape arrondi, de sorte que la barre remplie épouse les coins arrondis du fond. On lui donne une
couleur bleue personnalisée (ici un bleu moyen, code hex #0066CC). Ensuite, un composant Text est

7

placé avec Modifier.align(Alignment.Center) pour se superposer au centre du Box parent. Il
affiche la valeur de progress en pourcentage (convertie en entier). Le texte est en blanc pour être lisible
sur le fond coloré, et utilise le style bodySmall du thème Material3 pour être de taille appropriée.

Ce composable est stateless : il ne stocke aucun état en interne, il se contente d’afficher la vue en fonction
du paramètre progress reçu. Ainsi, c’est le parent (par exemple SplashScreen) qui gère l’évolution de
progress et provoque la recomposition de FillBar . Ce principe est conforme à la bonne pratique de

state hoisting (remontée d’état) : la logique de calcul du pourcentage est externalisée, et FillBar n’est
qu’une vue pure .

PuzzleFetcher.kt – Formulaire de récupération d’un puzzle

Le composant PuzzleFetcher est un élément clé de l’écran de jeu : il fournit une petite interface permettant
à l’utilisateur de saisir son email, de choisir la difficulté du puzzle via un slider, puis de lancer la
récupération du puzzle auprès de l’API. Ce composant gère plusieurs états : le texte de l’email saisi, la
valeur de difficulté sélectionnée, un état de validation (email valide ou non), et l’état de chargement (en
cours de récupération ou non). Il est conçu de manière à ne pas contenir l’état final du puzzle lui-même,
mais à transmettre celui-ci via un callback onNewPuzzle lorsque l’API a répondu. Ainsi, le puzzle chargé
sera « remonté » au niveau supérieur (GameScreen) qui pourra alors l’afficher.

Le code suivant implémente PuzzleFetcher . Pour simplifier, nous simulons l’appel réseau avec un délai
(comme si on attendait la réponse de l’API) et nous générons un objet Puzzle factice. Dans une
application réelle, la fonction fetchPuzzleFromApi(email, difficulty) serait implémentée pour
effectuer une requête HTTP et récupérer les données du puzzle.

package com.example.puzzlegame.ui

import androidx.compose.foundation.layout.*

import androidx.compose.material3.*

import androidx.compose.runtime.*

import androidx.compose.ui.Modifier

import androidx.compose.ui.platform.LocalContext

import androidx.compose.ui.text.input.TextFieldValue

import androidx.compose.ui.unit.dp

import kotlinx.coroutines.delay

@Composable

fun PuzzleFetcher(onNewPuzzle: (Puzzle) -> Unit) {

// État pour l'email saisi

var email by remember { mutableStateOf("") }

// État pour la difficulté (nombre de pièces par côté du puzzle)

var difficulty by remember { mutableStateOf(3) }

// État pour indiquer si on est en cours de chargement (appel API en cours)

var isLoading by remember { mutableStateOf(false) }

// État pour un éventuel message d'erreur

var errorMessage by remember { mutableStateOf<String?>(null) }

2

8

https://developer.android.com/develop/ui/compose/state#:~:text=A%20composable%20that%20uses%20,reusable%20and%20harder%20to%20test

// Validation basique de l'email (doit contenir "@" et un ".")

val isEmailValid = email.contains("@") && email.contains(".")

Column(modifier = Modifier.fillMaxWidth().padding(16.dp)) {

// Champ de texte pour l'email

OutlinedTextField(

value = email,

onValueChange = {

email = it

errorMessage = null // réinitialise l'erreur lorsqu'on modifie

l'email

},

label = { Text("Email") },

isError = !isEmailValid && email.isNotEmpty(),

modifier = Modifier.fillMaxWidth()

)

if (!isEmailValid && email.isNotEmpty()) {

Text(

text = "Adresse email invalide",

color = MaterialTheme.colorScheme.error,

style = MaterialTheme.typography.bodySmall

)

}

Spacer(modifier = Modifier.height(16.dp))

// Slider pour la difficulté (de 2 à 5)

Text(text = "Difficulté : $difficulty x $difficulty pièces")

Slider(

value = difficulty.toFloat(),

onValueChange = { difficulty = it.toInt() },

valueRange = 2f..5f,

steps = 3 // valeurs entières 2, 3, 4, 5

)

Spacer(modifier = Modifier.height(8.dp))

// Bouton de chargement du puzzle

Button(

onClick = {

if (!isEmailValid) {

errorMessage = "Veuillez entrer un email valide."

return@Button

}

// Démarre le chargement du puzzle (appel réseau simulé)

isLoading = true

errorMessage = null

},

enabled = !isLoading,

modifier = Modifier.fillMaxWidth()

) {

9

Text(if (isLoading) "Chargement..." else "Charger le puzzle")

}

// Affichage d'un indicateur de progression pendant le chargement

if (isLoading) {

LaunchedEffect(Unit) {

try {

// Simulation: attente de 2 secondes pour imiter un appel

réseau

delay(2000)

// Génération d'un puzzle factice une fois "récupéré"

val puzzle = Puzzle.generateDummyPuzzle(difficulty)

onNewPuzzle(puzzle) // envoie le puzzle récupéré vers

l'extérieur

} catch (e: Exception) {

errorMessage = "Erreur lors de la récupération du puzzle."

} finally {

isLoading = false

}

}

LinearProgressIndicator(modifier = Modifier.fillMaxWidth())

}

// Affichage d'un message d'erreur s'il y a lieu

errorMessage?.let { msg ->

Text(text = msg, color = MaterialTheme.colorScheme.error)

}

}

}

Explications : Le composable est structuré en colonne avec du padding. Le champ de texte
(OutlinedTextField) est lié à la variable d’état email . Une validation sommaire vérifie que l’email
contient au moins un " @ " et un " . ". Si l’utilisateur a commencé à saisir quelque chose et que la validation
échoue, on affiche un texte d’erreur sous le champ. Le slider de difficulté utilise une valeur entière entre 2 et
5 (ces valeurs correspondent au nombre de pièces par côté du puzzle, par exemple 3 signifie un puzzle 3x3
donc 9 pièces). Le texte au-dessus du slider indique la taille actuelle sélectionnée.

Le bouton "Charger le puzzle" est cliquable seulement si on n’est pas déjà en cours de chargement
(enabled = !isLoading). Au clic, on vérifie la validité de l’email : si invalide, on met à jour un message
d’erreur et on ne poursuit pas. Si tout est bon, on met isLoading = true , on réinitialise les anciens
messages d’erreur, et on déclenche l’opération de chargement du puzzle.

Lorsque isLoading passe à true , un LaunchedEffect est lancé (avec Unit en clé pour qu’il
s’exécute immédiatement une seule fois) afin de faire l’appel réseau de manière asynchrone sans bloquer
l’UI. Ici, on utilise delay(2000) pour simuler un temps de réponse. Après ce délai, on crée un puzzle fictif
via Puzzle.generateDummyPuzzle(difficulty) (nous définirons cette fonction dans la classe Puzzle
pour générer une liste de pièces factices). Puis on invoque onNewPuzzle(puzzle) afin de transmettre le
puzzle récupéré au niveau supérieur (GameScreen). Quoi qu’il arrive (succès ou exception), on met
isLoading = false dans le bloc finally pour cacher l’indicateur de chargement et réactiver l’UI. En

10

parallèle, pendant que isLoading est vrai, on affiche un LinearProgressIndicator (barre de
progression horizontale indéterminée) sous le bouton pour signaler visuellement que le chargement est en
cours. Si une erreur s’est produite (par exemple, une exception dans l’appel réseau), on affiche le message
d’erreur stocké dans errorMessage en rouge en bas du formulaire.

Ce composant gère son état local (email, difficulté, chargement, erreur) mais il externalise l’état global
du puzzle. En effet, une fois le puzzle obtenu, il est passé via le callback onNewPuzzle plutôt que d’être
affiché directement ici. Cette conception respecte la séparation des responsabilités : PuzzleFetcher
s’occupe de la saisie et du fetch, puis c’est le parent qui décidera comment utiliser le Puzzle . On applique
ici le principe de state hoisting (remontée d’état) et de composable sans état interne pour la donnée métier
principale . Le composable en lui-même reste réutilisable pour n’importe quelle logique de récupération
de puzzle similaire, en passant une fonction de traitement différente si nécessaire.

Puzzle.kt – Représentation des données du puzzle

La classe de données Puzzle sert à modéliser le puzzle récupéré depuis l’API. Elle contient les informations
nécessaires pour afficher et résoudre le puzzle : typiquement la liste des morceaux de l’image (ici
représentés par des URLs d’images qui seront chargées), et la dimension de la grille du puzzle (par exemple
3 pour un puzzle 3x3). Selon l’API réelle, on pourrait avoir d’autres champs (un identifiant, le nom du puzzle,
etc.), mais pour notre projet nous nous limitons à ces éléments.

Ci-dessous le code de Puzzle.kt . On y inclut également une fonction utilitaire generateDummyPuzzle
pour générer un puzzle factice à partir d’une difficulté donnée (cette fonction nous aide à simuler une
réponse de l’API dans notre démonstration sans accès réseau effectif).

package com.example.puzzlegame.model

data class Puzzle(

val imageUrls: List<String>, // URLs de chaque pièce du puzzle (ordonnées

par position correcte)

val gridSize: Int // taille de la grille (ex: 3 pour 3x3)

) {

companion object {

// Génère un puzzle factice de dimension n x n pour test (images

placeholder)

fun generateDummyPuzzle(n: Int): Puzzle {

// On utilise des images de placeholder en ligne (par exemple via un

service public)

val totalPieces = n * n

val urls = List(totalPieces) { index ->

// Génère une URL d'image arbitraire avec l'index pour

différencier (ici images placeholder via https://picsum.photos)

"https://picsum.photos/seed/puzzle$index/300/300"

}

return Puzzle(imageUrls = urls, gridSize = n)

}

2

11

https://developer.android.com/develop/ui/compose/state#:~:text=A%20composable%20that%20uses%20,reusable%20and%20harder%20to%20test

}

}

Explications : Puzzle est une data class simple. Le champ imageUrls est une liste de chaînes de
caractères représentant les liens vers les images de chaque pièce. On suppose que ces images sont carrées
et toutes de la même taille (par exemple 300x300 pixels comme indiqué dans l’URL placeholder). L’ordre de
cette liste correspond à l’ordre correct des pièces (c’est-à-dire que l’image à l’index 0 correspond à la position
[0,0] dans la grille une fois le puzzle résolu, l’index 1 correspond à la position [0,1], etc.). Le champ
gridSize indique combien de pièces par côté compose le puzzle (ce qui définit la dimension de la grille :

gridSize x gridSize pièces).

La fonction generateDummyPuzzle(n) est dans un companion object pour pouvoir être appelée
sans instance. Elle crée une liste de totalPieces URLs en utilisant un service d’images aléatoires (ici
Picsum Photos, qui retourne une image aléatoire différente pour chaque URL unique). On incorpore l’index
du morceau dans l’URL pour varier chaque image. Ainsi, si l’on appelle
Puzzle.generateDummyPuzzle(3) , on obtiendra un Puzzle de 9 pièces (3x3) avec 9 URL distinctes

pointant vers des images aléatoires. NB: Dans un contexte réel, l’API fournirait probablement déjà soit
l’image globale à découper, soit directement les images découpées. Ici, on simule le second cas où chaque
pièce est une image séparée disponible via une URL.

JigsawPiece.kt – Composable pour afficher une pièce du puzzle

JigsawPiece est un composable responsable de l’affichage individuel d’une pièce de puzzle, c’est-à-dire
d’une image carrée. Il doit également gérer l’état de chargement de l’image (afficher un indicateur visuel
tant que l’image n’est pas chargée). Pour cela, on utilise la bibliothèque Coil qui s’intègre bien avec
Compose pour charger des images à partir d’URL. En particulier, Coil fournit le composable
SubcomposeAsyncImage permettant de spécifier un contenu de remplacement (placeholder) pendant le

chargement.

Notre JigsawPiece prend en paramètre l’URL de l’image de la pièce, ainsi que deux indicateurs booléens
optionnels : isSelected et isCorrect . Ces drapeaux permettent de savoir si la pièce est actuellement
sélectionnée par le joueur et si elle est à sa position correcte, afin d’afficher des bordures colorées en
conséquence (par exemple une bordure jaune pour la pièce sélectionnée, une bordure verte pour une pièce
bien placée). Le composable ajuste son apparence en fonction de ces états mais ne gère pas lui-même la
logique de sélection ou de vérification (cela est du ressort du JigsawManager).

Voici l’implémentation de JigsawPiece :

package com.example.puzzlegame.ui

import androidx.compose.foundation.BorderStroke

import androidx.compose.foundation.layout.Box

import androidx.compose.foundation.layout.fillMaxSize

import androidx.compose.foundation.shape.RectangleShape

import androidx.compose.material3.Card

12

import androidx.compose.material3.CardDefaults

import androidx.compose.material3.CircularProgressIndicator

import androidx.compose.runtime.Composable

import androidx.compose.ui.Modifier

import androidx.compose.ui.graphics.Color

import coil.compose.SubcomposeAsyncImage

@Composable

fun JigsawPiece(

imageUrl: String,

isSelected: Boolean,

isCorrect: Boolean,

modifier: Modifier = Modifier

) {

// Choix de la couleur de bordure selon l'état

val borderColor: Color = when {

isSelected -> Color.Yellow // pièce sélectionnée (jaune)

isCorrect -> Color.Green // pièce à la bonne place (vert)

else -> Color.Transparent // pas de bordure visible autrement

}

// On peut utiliser un Card de Material3 pour bénéficier d'une bordure et

d'un fond

Card(

modifier = modifier,

shape = RectangleShape, // pièces carrées sans arrondi

border = BorderStroke(width = 2.dp, color = borderColor),

colors = CardDefaults.cardColors(containerColor = Color.LightGray) //

fond gris clair par défaut

) {

Box {

// Chargement asynchrone de l'image de la pièce

SubcomposeAsyncImage(

model = imageUrl,

contentDescription = "Pièce du puzzle",

loading = {

// Affiche un indicateur de chargement tant que l'image

n'est pas chargée

Box(modifier = Modifier.fillMaxSize(), contentAlignment =

Alignment.Center) {

CircularProgressIndicator(color = Color.DarkGray)

}

},

modifier = Modifier.fillMaxSize(),

contentScale = ContentScale.Crop

)

}

13

}

}

Explications : Le composable utilise un composant Card de Material3 comme conteneur de la pièce. Les
Card proposent facilement des bordures (border) et une couleur de fond (containerColor via
CardDefaults.cardColors). Ici, on définit la forme (RectangleShape) sans arrondis pour que les

pièces soient bien carrées. La bordure a une épaisseur de 2dp et sa couleur dépend de l’état de la pièce :
jaune si la pièce est sélectionnée, verte si elle est correctement placée, sinon transparente (pas de bordure
visible). Le fond par défaut est gris clair, ce qui sera visible uniquement si l’image met du temps à charger
ou en cas d’erreur, afin d’avoir un aplat neutre.

À l’intérieur de la carte, on utilise SubcomposeAsyncImage (fournie par Coil Compose) pour charger
l’image à partir de imageUrl . Le paramètre loading définit le contenu affiché pendant que l’image se
charge : nous mettons un CircularProgressIndicator centré qui tournera pour indiquer le
chargement en cours. Une fois l’image chargée, celle-ci remplacera le contenu de loading . Nous utilisons
contentScale = ContentScale.Crop pour que l’image remplisse bien l’espace de la pièce en

recadrant si nécessaire (ainsi chaque pièce reste carrée et couvre toute la carte).

Le composable JigsawPiece est dépendant de l’état qui lui est fourni (isSelected et isCorrect),
mais il ne gère pas d’état en interne. C’est le parent (la grille de puzzle) qui décide quelle pièce est
sélectionnée et quelles pièces sont à la bonne place, et qui appelle JigsawPiece en conséquence. Cette
séparation permet de changer la logique de sélection sans modifier le composant d’affichage de la pièce.

Jigsaw.kt – Affichage de la grille de puzzle

Le composant Jigsaw est chargé de disposer l’ensemble des pièces du puzzle sur une grille carrée. Il reçoit
en paramètre le puzzle à afficher (une instance de Puzzle) ainsi qu’une instance de JigsawManager qui
contient l’état courant de la disposition des pièces et la logique pour échanger les pièces. Jigsaw va
s’appuyer sur les données de JigsawManager pour savoir dans quel ordre afficher les pièces et comment
réagir aux interactions de l’utilisateur (par exemple, lorsqu’une pièce est cliquée pour être sélectionnée ou
échangée).

Dans une implémentation Compose moderne, on pourrait utiliser une LazyVerticalGrid pour générer la
grille, mais pour plus de pédagogie et de contrôle nous allons construire la grille “à la main” en utilisant des
colonnes et des lignes (Column contenant des Row). Cela permet de parcourir toutes les positions de 0 à
gridSize*gridSize - 1 et de placer un composable JigsawPiece à chaque position

correspondante.

Le code de Jigsaw est présenté ci-dessous :

package com.example.puzzlegame.ui

import androidx.compose.foundation.clickable

import androidx.compose.foundation.layout.*

import androidx.compose.runtime.Composable

14

import androidx.compose.ui.Modifier

@Composable

fun Jigsaw(puzzle: Puzzle, manager: JigsawManager, modifier: Modifier =

Modifier) {

val gridSize = puzzle.gridSize

Column(modifier = modifier.fillMaxWidth()) {

// Parcours des rangées du puzzle

for (row in 0 until gridSize) {

Row(modifier = Modifier.fillMaxWidth()) {

// Parcours des colonnes pour chaque pièce de la rangée

for (col in 0 until gridSize) {

val positionIndex = row * gridSize + col

// L'index de l'image à afficher à cette position selon la

permutation courante

val imageIndex = manager.arrangement[positionIndex]

// Détermination des états de bordure

val isCorrect = (imageIndex == positionIndex)

val isSelected = (manager.firstSelectedIndex ==

positionIndex)

// Composable de la pièce avec gestion du clic

JigsawPiece(

imageUrl = puzzle.imageUrls[imageIndex],

isSelected = isSelected,

isCorrect = isCorrect,

modifier = Modifier

.weight(1f) // chaque pièce partage

équitablement l'espace horizontal

.aspectRatio(1f) // chaque pièce est

carrée (hauteur = largeur)

.clickable {

// Gestion du clic sur une pièce : délègue au

JigsawManager

manager.onTileClicked(positionIndex)

}

)

}

}

}

}

}

Explications : On récupère gridSize depuis le puzzle pour savoir combien de lignes et colonnes afficher.
On crée une Column occupant toute la largeur disponible. Pour chaque numéro de ligne de 0 à gridSize-1,
on génère une Row . À l’intérieur de chaque ligne, on itère sur chaque colonne de 0 à gridSize-1 et on
calcule l’index linéaire de la position (positionIndex = row * gridSize + col).

15

Ensuite, on consulte manager.arrangement à cet index pour connaître imageIndex , c’est-à-dire l’index
réel de l’image qui doit être placée à cette position dans l’état actuel du puzzle. Par exemple, si
manager.arrangement[0] == 5 , cela signifie que la pièce qui devrait être à la position 0 (coin haut

gauche) est actuellement la pièce d’index 5 (donc la mauvaise pièce est là, le puzzle est mélangé).

On détermine deux booléens : isCorrect est vrai si la pièce à cette position est la bonne (c’est-à-dire si
imageIndex == positionIndex), et isSelected est vrai si cette position correspond à l’index de la

pièce sélectionnée actuellement par le joueur (manager.firstSelectedIndex). Ces indicateurs sont
passés à JigsawPiece afin qu’il affiche éventuellement une bordure colorée.

Pour l’affichage, chaque JigsawPiece est contenu dans un Modifier.weight(1f) à l’intérieur d’une
Row, ce qui fait que les pièces se répartissent équitablement sur la largeur de l’écran. L’ajout de
aspectRatio(1f) assure que chaque pièce est rendue dans un conteneur carré (la hauteur de la Row

s’adapte pour respecter le ratio 1:1 en fonction de la largeur disponible pour chaque pièce). Ainsi, la grille
sera toujours carrée et les pièces uniformément dimensionnées.

Le Modifier.clickable entoure chaque pièce pour gérer les interactions utilisateur. Au clic sur une
pièce, on appelle manager.onTileClicked(positionIndex) – c’est une méthode du JigsawManager
qui encapsule la logique de sélection/échange des pièces (décrite dans la section suivante). En confiant la
gestion du clic au manager, on isole la logique du jeu en dehors de l’UI. L’UI (Jigsaw) se contente de
déduire l’état visuel (isSelected , isCorrect) en fonction de l’état du manager, et de demander au
manager d’actualiser l’état lorsque l’utilisateur agit.

En résumé, Jigsaw est un composable dumb UI (composable présentoir) qui affiche la grille de pièces en
se basant sur l’état du puzzle fourni par JigsawManager . Il n’a pas d’état propre et reflète simplement le
contenu de manager.arrangement . Cela facilite la compréhension : tout le comportement interactif se
trouve centralisé dans JigsawManager .

JigsawManager.kt – Logique et état du puzzle

La classe JigsawManager est le cœur de la logique du puzzle. Elle n’est pas un composant UI (pas un
Composable), mais une classe Kotlin standard qui gère : - L’état courant de la permutation des pièces
(arrangement), c’est-à-dire l’ordre dans lequel les images sont disposées dans la grille. - La sélection d’une
première pièce à échanger (firstSelectedIndex). - La logique d’échange de deux pièces sélectionnées.
- La vérification de la résolution du puzzle (toutes les pièces à la bonne place). - D’éventuelles informations
supplémentaires comme le nombre de mouvements effectués (on peut le conserver à titre indicatif).

Cette classe interagit avec l’UI via ses propriétés observables. En utilisant des types mutables observables
de Compose (MutableState ou mutableStateListOf), on s’assure que l’UI (les composables) se
mettra à jour automatiquement quand l’état du puzzle change. JigsawManager peut être initialisé à
chaque nouveau puzzle, et exposer les informations nécessaires à l’UI (par exemple, pour mettre une
bordure verte quand une pièce est bien placée, il suffit de comparer index et valeur dans arrangement
côté UI, comme on l’a fait).

Voici le code de JigsawManager :

16

package com.example.puzzlegame.ui

import androidx.compose.runtime.mutableStateListOf

class JigsawManager(puzzle: Puzzle) {

// Liste observable représentant l'ordre actuel des pièces (permutation des

indices)

val arrangement = mutableStateListOf<Int>()

// Index de la première pièce sélectionnée (ou null si aucune pièce n'est en

cours de sélection)

var firstSelectedIndex: Int? = null

private set

init {

// Initialisation de l'arrangement avec une permutation aléatoire des

indices 0..n-1

val indices = (0 until puzzle.imageUrls.size).toList()

arrangement.addAll(indices.shuffled())

// S'assurer de ne pas démarrer sur un puzzle déjà résolu par hasard

if (isSolved()) {

arrangement.shuffle()

}

}

// Appelé lorsqu'une pièce à la position index est cliquée

fun onTileClicked(positionIndex: Int) {

if (firstSelectedIndex == null) {

// Aucune pièce encore sélectionnée, on sélectionne celle cliquée

firstSelectedIndex = positionIndex

} else {

// Une première pièce était déjà sélectionnée, on échange avec la

nouvelle

swapTiles(firstSelectedIndex!!, positionIndex)

// Réinitialiser la sélection

firstSelectedIndex = null

}

}

// Permute deux pièces dans l'arrangement

private fun swapTiles(index1: Int, index2: Int) {

if (index1 == index2) return // si on clique deux fois la même pièce,

on ne fait rien

val temp = arrangement[index1]

arrangement[index1] = arrangement[index2]

arrangement[index2] = temp

}

17

// Vérifie si le puzzle est résolu (toutes les pièces à leur place)

fun isSolved(): Boolean {

// Le puzzle est résolu si chaque valeur est égale à son index (position

correcte)

return arrangement.indices.all { pos -> arrangement[pos] == pos }

}

}

Explications : Dans le constructeur (init), on crée d’abord une liste indices contenant tous les indices
possibles des pièces (0 à nombreDePieces-1). On mélange cette liste aléatoirement (shuffled()) et on
l’ajoute à arrangement . Ainsi, initialement, les pièces sont dans un ordre aléatoire. On ajoute une petite
vérification : si par hasard ce mélange était déjà la solution (très peu probable, mais possible
statistiquement), on mélange à nouveau (shuffle()) pour s’assurer de ne pas commencer avec le puzzle
déjà résolu.

La propriété arrangement est une mutableStateListOf<Int> – c’est une liste observable par
Compose. Toute modification (ajout, échange, etc.) entraîne une notification de Compose et donc une
recomposition des composables qui l’utilisent. Cela permet à l’UI (le composant Jigsaw) de se mettre à
jour automatiquement lorsque l’on échange des pièces.

firstSelectedIndex garde la trace de la première pièce que l’utilisateur a cliquée pour un échange en
cours. Au début, il n’y a pas de pièce sélectionnée, donc c’est null . La méthode
onTileClicked(positionIndex) est appelée par l’UI lorsqu’une pièce est cliquée. Si aucune pièce

n’était sélectionnée (firstSelectedIndex == null), on enregistre l’index cliqué comme première
sélection. Si au contraire une pièce était déjà sélectionnée, cela signifie que l’utilisateur a cliqué sur une
seconde pièce : on appelle alors swapTiles pour échanger les deux pièces dans l’ arrangement . Après
l’échange, on remet firstSelectedIndex à null (l’échange est terminé, plus aucune pièce n’est
« active »).

La méthode privée swapTiles(index1, index2) effectue l’échange des éléments de la liste
arrangement aux positions données. On ajoute une condition pour ne rien faire si index1 == index2

(par exemple, l’utilisateur a double-cliqué la même pièce, ou cliqué accidentellement deux fois la même :
dans ce cas pas d’échange à faire). L’échange se fait en trois opérations : sauvegarde temporaire d’une
valeur, assignations croisées. Étant donné que arrangement est une liste observable, ces changements
vont déclencher la recomposition de Jigsaw , ce qui mettra à jour la grille affichée.

Enfin, la fonction isSolved() retourne true si le puzzle est résolu, c’est-à-dire si pour chaque position
dans la grille, l’indice de pièce correspond à la même valeur (ex : à la position 0 on a la pièce 0, position 1 la
pièce 1, etc.). On l’utilise dans l’initialisation pour éviter un état résolu initial, et on pourrait l’utiliser pour, par
exemple, afficher un message de félicitations lorsque isSolved() passe à vrai après un échange.

Remarque sur l’architecture : JigsawManager illustre le principe de séparation logique/visuelle. C’est en
quelque sorte notre ViewModel/contrôleur pour le puzzle (bien qu’ici on ne fasse pas appel à la
bibliothèque ViewModel d’Android, on pourrait tout à fait intégrer JigsawManager dans un
ViewModel Compose). L’UI (Jigsaw composable) ne fait qu’appeler les méthodes du manager et lire ses

18

propriétés. Cela rend le code plus clair et facilite les tests unitaires de la logique de puzzle sans dépendre de
l’UI.

GameScreen.kt – Écran principal intégrant le puzzle

Le composant GameScreen représente l’écran de jeu complet. C’est sur cet écran que l’utilisateur va : 1.
Utiliser PuzzleFetcher pour entrer son email, choisir la difficulté et charger un puzzle. 2. Une fois le
puzzle chargé, voir apparaître la grille du puzzle (Jigsaw) et pouvoir interagir pour résoudre le puzzle.

GameScreen orchestre ces deux phases en gardant un état pour le puzzle courant. Au départ, aucun
puzzle n’est chargé, on affiche donc l’interface de PuzzleFetcher . Quand PuzzleFetcher invoque le
callback onNewPuzzle avec un puzzle, GameScreen met à jour son état interne pour enregistrer le
puzzle. Dès lors, l’interface recomposée affichera le puzzle et plus le formulaire.

On propose également d’afficher un message de réussite lorsque le puzzle est complété, ainsi qu’un bouton
pour éventuellement rejouer (charger un nouveau puzzle). Cela apporte une meilleure expérience
utilisateur.

Voici le code de GameScreen :

package com.example.puzzlegame.ui

import androidx.compose.foundation.layout.*

import androidx.compose.material3.Button

import androidx.compose.material3.Text

import androidx.compose.runtime.*

@Composable

fun GameScreen() {

// État du puzzle courant (null si pas encore chargé)

var currentPuzzle by remember { mutableStateOf<Puzzle?>(null) }

// Le manager du puzzle, initialisé lorsqu'un Puzzle est chargé

val jigsawManager = remember(currentPuzzle) {

currentPuzzle?.let { JigsawManager(it) }

}

Column(modifier = Modifier.fillMaxSize()) {

if (currentPuzzle == null) {

// Afficher le formulaire de chargement si aucun puzzle n'est

présent

PuzzleFetcher(onNewPuzzle = { puzzle ->

currentPuzzle = puzzle

})

} else {

// Un puzzle est chargé, on affiche la grille de jeu

Text(

19

text = "Puzzle ${currentPuzzle!!.gridSize}x$

{currentPuzzle!!.gridSize}",

style = MaterialTheme.typography.titleMedium,

modifier = Modifier.padding(16.dp)

)

// Affichage de la grille du puzzle

Jigsaw(puzzle = currentPuzzle!!, manager = jigsawManager!!,

modifier = Modifier.weight(1f))

// Si le puzzle est résolu, affichage d'un message de félicitations

et bouton rejouer

if (jigsawManager.isSolved()) {

Text(

text = " Puzzle complété ! ",

style = MaterialTheme.typography.titleMedium,

modifier = Modifier.padding(16.dp)

)

Button(onClick = {

// Réinitialiser l'état pour rejouer (revenir au formulaire)

currentPuzzle = null

}, modifier = Modifier.padding(16.dp)) {

Text("Nouveau puzzle")

}

}

}

}

}

Explications : GameScreen utilise un var currentPuzzle de type Puzzle? initialisé à null . Grâce
à remember , cette variable conservera sa valeur à travers les recompositions (ce qui est nécessaire car lors
d’un appel à currentPuzzle = puzzle , la fonction recomposera). On crée ensuite un jigsawManager
via remember(currentPuzzle) { ... } . Le paramètre currentPuzzle dans remember fait que
chaque fois qu’un nouveau puzzle est affecté, un nouveau JigsawManager sera créé (pour gérer ce
puzzle spécifique). Si currentPuzzle est null, on garde jigsawManager null (on n’en a pas besoin
avant d’avoir un puzzle).

L’UI est une colonne qui occupe tout l’écran. Si currentPuzzle est null, on affiche le composant
PuzzleFetcher . On passe la lambda onNewPuzzle qui assigne la valeur reçue à currentPuzzle .

Notez qu’en assignant currentPuzzle = puzzle , on change l’état, ce qui cause la recomposition de
GameScreen et donc la condition currentPuzzle == null deviendra fausse.

Une fois un puzzle chargé, la branche else est affichée : on montre un titre avec la taille du puzzle (par
exemple "Puzzle 3x3") pour contextualiser. Puis on affiche la grille du puzzle via Jigsaw , en passant
currentPuzzle!! (on force le non-null car on est dans le cas else où currentPuzzle n’est pas null) et un
jigsawManager!! (également non-null dans ce contexte). On donne à Jigsaw un
Modifier.weight(1f) pour qu’il prenne tout l’espace restant disponible sous le titre, permettant à la

20

grille de s’étendre (sans weight(1f) , la grille prendrait juste la place de son contenu et on pourrait avoir
un grand vide en bas si l’écran est plus grand que nécessaire).

Ensuite, on vérifie if (jigsawManager.isSolved()) : si le puzzle est résolu, on affiche un message de
félicitations avec des émojis confettis, ainsi qu’un bouton "Nouveau puzzle". Ce bouton remet
currentPuzzle à null, ce qui a pour effet de réafficher le formulaire PuzzleFetcher (donc l’utilisateur

peut charger un autre puzzle).

Ainsi, l’application offre la possibilité d’enchaîner les parties sans redémarrer l’app, en repassant par l’écran
de sélection dès qu’un puzzle est fini. On pourrait améliorer en conservant l’email saisi précédemment, ou
en proposant directement un autre puzzle de même difficulté, mais cela sort du cadre de base.

Points à noter : GameScreen ne connaît pas les détails de comment JigsawManager fonctionne, ni
comment PuzzleFetcher obtient le puzzle – il orchestre simplement les sous-composants en fonction de
l’état. C’est un bon exemple de haut niveau de gestion d’état avec Compose. En particulier, on voit
l’utilisation de remember pour maintenir l’état currentPuzzle et l’objet JigsawManager associé à
travers les recompositions. L’utilisation de remember(currentPuzzle) assure qu’un nouveau manager
est créé uniquement quand le puzzle change, et pas à chaque recomposition, évitant de réinitialiser la
permutation du puzzle par inadvertance.

Fichiers build.gradle – Configuration du projet pour Compose et
Navigation

Pour que ce projet fonctionne, il faut s’assurer que la configuration Gradle prend en charge Jetpack
Compose et les bibliothèques utilisées (Material3, Navigation Compose, Coil, etc.). Deux fichiers sont à
configurer : le build.gradle au niveau du projet (Project) et celui du module de l’application (Module app).

build.gradle (Projet)

Le fichier de configuration du projet doit inclure les dépôts Maven de Google et Maven Central (qui
contiennent les artefacts Jetpack). Cela se fait généralement dans le settings.gradle ou le build.gradle
de projet selon la version de Gradle, mais l’important est d’avoir google() et mavenCentral() dans la
liste des dépôts. De plus, on s’assure d’appliquer le plugin Kotlin Android et d’avoir la bonne version du
plugin Compose.

// build.gradle (Project-level)

buildscript {

dependencies {

classpath "com.android.tools.build:gradle:8.0.2"

classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.8.21"

}

}

allprojects {

repositories {

21

google()

mavenCentral()

}

}

Note : Les versions ci-dessus (Gradle plugin 8.0.2, Kotlin 1.8.21) sont données à titre d’exemple et devraient
correspondre à une configuration compatible avec Compose en 2025. L’essentiel est d’avoir le plugin Gradle
Android récent et le plugin Kotlin correspondant.

build.gradle (Module app)

Le fichier de configuration de l’application est plus important pour intégrer Compose. On doit y activer
Compose, définir la version du compilateur Compose, et ajouter les dépendances nécessaires.

plugins {

id 'com.android.application'

id 'org.jetbrains.kotlin.android'

}

android {

compileSdk 33

defaultConfig {

applicationId "com.example.puzzlegame"

minSdk 21

targetSdk 33

versionCode 1

versionName "1.0"

}

// Activation de Jetpack Compose

buildFeatures {

compose true

}

composeOptions {

kotlinCompilerExtensionVersion

"1.4.8" // version du Compiler Extension à adapter selon Compose

}

packagingOptions {

resources {

excludes += "/META-INF/{AL2.0,LGPL2.1}" // Exclusion d'éventuels

duplicats de licences communes

}

}

}

dependencies {

22

// Dépendances Jetpack Compose

implementation "androidx.activity:activity-compose:1.7.2"

implementation "androidx.compose.ui:ui:1.4.3"

implementation "androidx.compose.ui:ui-tooling-preview:1.4.3"

implementation "androidx.compose.material3:material3:1.1.0"

// Navigation Compose pour la navigation entre écrans

implementation "androidx.navigation:navigation-compose:2.6.0"

// Coil pour le chargement d'images dans Compose

implementation "io.coil-kt:coil-compose:2.2.2"

// (Optionnel) Intégration ViewModel avec Compose

implementation "androidx.lifecycle:lifecycle-viewmodel-compose:2.6.1"

}

Détails :

On applique les plugins com.android.application et org.jetbrains.kotlin.android .
compileSdk est défini à 33 (ou plus, selon le niveau Android visé). minSdk 21 est le minimum

supporté par Compose (on pourrait mettre 23+ selon les besoins).
Dans buildFeatures , on active compose = true pour informer Gradle qu’on utilise Jetpack
Compose.
On précise la version de l’extension du compilateur Compose via
composeOptions.kotlinCompilerExtensionVersion . Cette version doit correspondre à la

version des bibliothèques Compose utilisées. Dans l’exemple, on utilise Compose UI 1.4.3 et
Material3 1.1.0, ce qui requiert une version du compiler extension ~1.4.8 (à ajuster en fonction des
notes de version Compose).
Dans les dépendances, on ajoute :
activity-compose qui fournit l’activité optimisée pour Compose (ComponentActivity avec

support Compose).
compose.ui et compose.material3 pour les composants UI et le thème Material3.
compose.ui-tooling-preview pour avoir la fonction preview (et des outils de debug).
navigation-compose pour la navigation entre écrans en Compose.
coil-compose pour charger les images depuis le web dans les composables.

En option, lifecycle-viewmodel-compose si on compte utiliser des ViewModel avec Compose
(ici non utilisé explicitement, mais souvent utile en architecture MVVM).

On n’oublie pas d’inclure google() et mavenCentral() dans les repositories du module
également si nécessaire. Souvent, cela est pris en charge au niveau projet comme montré plus haut.

Avec ces configurations, lors de la compilation, Gradle saura tirer les dépendances de Compose et les
compiler correctement. Jetpack Compose n’utilise pas de vue XML, donc pas besoin de fichiers layout ou de
findViewById . Tout le rendu UI est décrit dans le code Kotlin via les fonctions Composables.

•
•

•

•

•
•

•
•
•
•

•

•

23

Bonnes pratiques appliquées

Ce projet met en œuvre un certain nombre de bonnes pratiques de développement avec Jetpack Compose
et Kotlin, que nous résumons ici :

Séparation de la logique et de l’UI : La logique du jeu de puzzle est isolée dans JigsawManager
(classe Kotlin non-UI) tandis que l’UI (composables Jigsaw , JigsawPiece , etc.) se contente de
refléter l’état fourni par ce manager et de lui déléguer les actions de l’utilisateur. Cette séparation
rend les composables plus simples (sans logique métier complexe) et facilite les tests unitaires de la
logique (puisqu’on peut tester JigsawManager sans interface). Cela s’apparente au pattern MVVM
où le UI observe un ViewModel.

State Hoisting (remontée d’état) et Composables sans état interne : La plupart des composables
définis (SierraFlag , FillBar , JigsawPiece , Jigsaw) ne stockent pas d’état en interne. Ils
reçoivent les données dont ils ont besoin via leurs paramètres. Par exemple, FillBar affiche une
progression qu’on lui passe, JigsawPiece affiche une image et une bordure selon des indicateurs
passés, etc. Si un composable a besoin d’un état (par exemple PuzzleFetcher pour l’email et la
difficulté), cet état est géré localement mais le résultat final (comme le puzzle récupéré) est
remonté au niveau supérieur (GameScreen). C’est une application du principe de stateless
composables, encouragé par la documentation officielle , pour maximiser la réutilisabilité et la
testabilité. Un composable stateless peut être réutilisé dans d’autres contextes facilement car il n’a
pas de dépendance cachée.

Gestion de l’état avec remember et types MutableState : On utilise remember

{ mutableStateOf(...) } pour créer des états locaux dans les composables (progress dans
SplashScreen, email / difficulty dans PuzzleFetcher, etc.). Le mécanisme remember permet
de conserver la valeur à travers les recompositions successives d’un même composable. Cela évite
de réinitialiser ces valeurs à chaque fois que l’UI se rafraîchit. De même, on utilise
mutableStateListOf pour la liste observable des pièces dans JigsawManager . Les types
MutableState et SnapshotStateList sont observables par Compose : toute modification

provoque automatiquement la mise à jour de l’interface aux endroits où ces états sont utilisés. Il est
important de noter que l’on évite les collections mutables classiques non observables (ArrayList
etc.) pour stocker l’état UI, conformément aux recommandations Android .

Effets side-effect bien encapsulés (LaunchedEffect & rememberCoroutineScope) : Nous avons
eu recours à LaunchedEffect pour gérer des opérations asynchrones liées au cycle de vie des
composables:

Dans SplashScreen , un LaunchedEffect(Unit) démarre l’animation de la barre de
progression lorsque l’écran s’affiche. Ce coroutine context est lié à la composable SplashScreen et
sera automatiquement annulé si l’écran est recomposé hors de l’arbre (par exemple si on quitte
l’écran avant la fin de l’animation), évitant ainsi des actions inutiles ou des fuites de coroutine .
Dans PuzzleFetcher , un LaunchedEffect(Unit) à l’intérieur du if (isLoading) est
déclenché lorsqu’on passe en mode chargement. Il exécute la simulation d’appel réseau en
coroutine, puis remet à jour l’état (via onNewPuzzle ou message d’erreur). Utiliser

•

•

2

•

3

•

•

1

•

24

https://developer.android.com/develop/ui/compose/state#:~:text=A%20composable%20that%20uses%20,reusable%20and%20harder%20to%20test
https://developer.android.com/develop/ui/compose/state#:~:text=Caution%3A%20Using%20mutable%20objects%20such,T%3E%3E%60%20and%20the%20immutable%20%60listOf
https://developer.android.com/develop/ui/compose/side-effects#:~:text=,the%20scope%20of%20a%20composable

LaunchedEffect ici garantit que la logique de chargement est exécutée au bon moment et
annulée proprement si l’utilisateur navigue ailleurs.

Nous aurions pu utiliser rememberCoroutineScope pour lancer la coroutine du fetch directement
dans l’onClick du bouton, ce qui est une autre approche. Ici nous avons choisi LaunchedEffect
couplé à l’état isLoading pour bien découpler la logique d’appel réseau de l’événement d’onClick.
Les deux approches sont valides, l’essentiel étant de respecter le cycle de Compose.

Compose Navigation pour la navigation d’écran : Au lieu d’utiliser des Intents ou fragment
transactions, nous avons utilisé la navigation Compose pour gérer l’écran de splash et l’écran de jeu.
Cela permet de conserver un seul Activity (MainActivity) et de ne recharger que les composables
nécessaires. C’est en ligne avec l’architecture single-Activity recommandée. L’utilisation de la
navigation Compose assure également la conservation d’état des écrans déjà visités si on revenait
en arrière (non illustré ici car notre navigation va dans un seul sens sans retour arrière prévu).

Utilisation de bibliothèques Jetpack modernes : Le projet utilise Material3 (la dernière version de
Material Design), Coil pour le chargement d’images (privilégié par rapport à Glide/Picasso en
contexte Compose pour sa simplicité d’intégration), et les dernières versions de Compose UI. Cela
garantit des performances optimales et un support des bonnes pratiques (par exemple, Material3
apporte les composants OutlinedTextField , Card , etc., adaptés au nouveau design).

Commentaires et code clair : Bien que ce point ne soit pas technique, il s’agit d’une bonne pratique
de maintenir un code lisible. Nous avons ajouté des commentaires explicatifs dans le code source
pour clarifier l’intention de chaque section. Les noms de fonctions et de variables sont choisis pour
être explicites (PuzzleFetcher , isEmailValid , firstSelectedIndex , etc.), ce qui améliore
la lisibilité du code, surtout pour un débutant.

En suivant ces bonnes pratiques, l’application gagne en fiabilité et en maintenabilité. Les composables
stateless peuvent être adaptés, la logique peut évoluer sans impacter l’UI et vice-versa, et les
comportements asynchrones sont bien maîtrisés. La documentation officielle de Jetpack Compose insiste
sur l’importance de ces principes, par exemple en recommandant d’écrire des composables sans effet de
bord et en utilisant l’architecture déclarative pour l’état et la navigation .

Conclusion

Ce tutoriel a présenté en détail la construction d’une application de puzzle en utilisant Jetpack Compose. À
travers les différentes sections, nous avons vu comment définir des composables pour chaque partie de l’UI
(écran d’accueil, formulaire, puzzle), gérer l’état de l’application de manière réactive, et appliquer des
bonnes pratiques de développement moderne sur Android. Le résultat est un projet structuré où l’interface
utilisateur est décrite de façon déclarative et concise, et où la logique métier du puzzle est isolée et
testable.

En résumé, les points clés à retenir sont : - La mise en place de la navigation Compose pour structurer
l’application en écrans sans recourir aux fragments. - La création de composables sur mesure
(SierraFlag , FillBar , JigsawPiece) pour des éléments UI spécifiques, ce qui démontre la
flexibilité de Compose (dessin avec Canvas, custom view). - La gestion du formulaire avec Compose
(TextField , Slider , boutons) et la gestion de la validation utilisateur en temps réel. - L’utilisation de

•

•

•

•

4 2

25

https://developer.android.com/develop/ui/compose/side-effects#:~:text=A%20side,effect%20free
https://developer.android.com/develop/ui/compose/state#:~:text=A%20composable%20that%20uses%20,reusable%20and%20harder%20to%20test

Coil pour le chargement asynchrone d’images dans Compose, avec indications de chargement. -
L’implémentation de la logique d’un jeu de puzzle (mélange, sélection et échange de pièces, détection de
victoire) en Kotlin pur, intégrée de façon réactive avec l’UI. - Les bonnes pratiques comme le state hoisting,
les composables sans état, l’usage approprié de remember et des APIs d’effet (LaunchedEffect), qui
facilitent le développement d’interfaces déclaratives robustes.

Pour aller plus loin, on pourrait améliorer ce projet en intégrant une véritable source de puzzles (une API
REST réelle), en gérant la persistance de l’état (par exemple en cas de rotation d’écran on pourrait sauver/
restaurer currentPuzzle via un ViewModel ou rememberSaveable), ou en ajoutant des
fonctionnalités comme un chrono, le comptage de coups, etc. Cependant, même dans sa forme actuelle, ce
projet sert de base solide pour comprendre comment construire une application complète avec Jetpack
Compose en 2025, en tirant parti de l’ensemble de l’écosystème Android moderne.

Nous espérons que ce document vous aura aidé à comprendre la structure et le code de ce projet de puzzle.
Bon développement sous Android avec Compose !

Side-effects in Compose | Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/side-effects

State and Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/state

1 4

2 3

26

https://developer.android.com/develop/ui/compose/side-effects#:~:text=,the%20scope%20of%20a%20composable
https://developer.android.com/develop/ui/compose/side-effects#:~:text=A%20side,effect%20free
https://developer.android.com/develop/ui/compose/side-effects
https://developer.android.com/develop/ui/compose/state#:~:text=A%20composable%20that%20uses%20,reusable%20and%20harder%20to%20test
https://developer.android.com/develop/ui/compose/state#:~:text=Caution%3A%20Using%20mutable%20objects%20such,T%3E%3E%60%20and%20the%20immutable%20%60listOf
https://developer.android.com/develop/ui/compose/state

	Documentation du projet de jeu de puzzle (Android, Kotlin, Jetpack Compose)
	Introduction
	Sommaire
	MainActivity.kt – Navigation avec Jetpack Compose
	SplashScreen.kt – Écran d’accueil animé
	SierraFlag.kt – Dessin du drapeau de la Sierra Leone
	FillBar.kt – Barre de progression personnalisée avec texte
	PuzzleFetcher.kt – Formulaire de récupération d’un puzzle
	Puzzle.kt – Représentation des données du puzzle
	JigsawPiece.kt – Composable pour afficher une pièce du puzzle
	Jigsaw.kt – Affichage de la grille de puzzle
	JigsawManager.kt – Logique et état du puzzle
	GameScreen.kt – Écran principal intégrant le puzzle
	Fichiers build.gradle – Configuration du projet pour Compose et Navigation
	build.gradle (Projet)
	build.gradle (Module app)

	Bonnes pratiques appliquées
	Conclusion

