& ChatGPT

Documentation du projet de jeu de puzzle
(Android, Kotlin, Jetpack Compose)

Introduction

Ce document présente un jeu de puzzle Android développé en Kotlin avec Jetpack Compose. Lobjectif de
ce projet est de proposer un petit jeu de puzzle (de type jigsaw puzzle) dont les pieces sont récupérées
dynamiquement depuis une API web en fonction d'une adresse email utilisateur et d'un niveau de difficulté
choisi. Lapplication illustre l'utilisation de Jetpack Compose pour construire une interface moderne sans
XML, en incluant un écran d’accueil animé et une interface de jeu interactive. Elle démontre également de
bonnes pratiques de développement avec Compose, telles que la navigation déclarative, la gestion d'état
et les effets de bord contrdlés.

Concrétement, le flux de l'application est le suivant : un écran d'accueil (SplashScreen) affiche le drapeau de
la Sierra Leone dessiné en Compose et une barre de chargement animée, avec un bouton permettant de
démarrer. Une fois le jeu lancé, I'écran principal (GameScreen) permet a l'utilisateur de saisir son email, de
sélectionner la difficulté (par exemple la taille du puzzle), puis de récupérer un puzzle depuis I'API
(PuzzleFetcher). Le puzzle est représenté par une image découpée en plusieurs piéces (Puzzle et JigsawPiece).
Ces pieces sont affichées mélangées sur une grille (Jigsaw), et le joueur doit les échanger pour reconstituer
Iimage. La logique de permutation des piéces, la vérification des piéces bien placées (avec bordures
colorées) et la détection de la fin du jeu sont gérées par une classe dédiée (JigsawManager). Linterface
utilise Jetpack Compose Navigation pour passer de I'écran d'accueil au jeu, et exploite des composants
Composables réutilisables et sans état pour une meilleure maintenabilité.

Le document est structuré de facon pédagogique : chaque section correspond a un composant ou fichier
du projet, avec son code source complet, des explications claires et des commentaires en francais. Les
bonnes pratiques utilisées (telles que | LaunchedEffect, composables sans état, utilisation de
remember / mutableStateOf |, etc.) sont soulignées au fil du texte et récapitulées en fin de document.
L'ensemble vise a guider un débutant pas a pas dans la compréhension du code et des concepts mis en
ceuvre.

Sommaire

1. Introduction - Présentation du projet et de ses objectifs

2. MainActivity.kt - Mise en place de la navigation Compose

3. SplashScreen.kt - Ecran d'accueil animé (drapeau de la Sierra Leone, barre de chargement, bouton
démarrer)

4. SierraFlag.kt - Composable dessinant le drapeau (exemple de dessin avec Canvas)

5. FillBar.kt - Composable de barre de progression animée avec pourcentage de remplissage

6. PuzzleFetcher.kt - Formulaire de récupération du puzzle (champ email, slider de difficulté, appel
réseau)

7. Puzzle.kt - Data class représentant le puzzle (métadonnées et piéces)

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf

8. JigsawPiece.kt - Composable d'une piéce du puzzle (chargement d'image avec état de chargement)
9. Jigsaw.kt - Affichage de la grille de piéces du puzzle selon un ordre (permutation)

10. JigsawManager.kt - Logique du puzzle (gestion d'état, échanges de piéces, bordures, validation de

fin)

11. GameScreen.kt - Ecran principal du jeu intégrant PuzzleFetcher et la grille du puzzle

12. Fichiers build.gradle - Configuration Gradle pour Jetpack Compose et la navigation

13. Bonnes pratiques appliquées - Récapitulatif des pratiques de développement utilisées

14. Conclusion - Synthese et pistes d'amélioration

MainActivity.kt - Navigation avec Jetpack Compose

La classe MainActivity initialise l'interface Compose de l'application et définit la navigation entre les écrans
(SplashScreen et GameScreen). Grace a Jetpack Compose Navigation, on peut déclarer un NavHost avec
des routes correspondant aux écrans de l'application. Dans ce projet, nous avons deux destinations :
"splash" | pour l'écran d'accueil, et | "game" pour I'écran du jeu. Le code suivant montre comment
I' Activity utilise | setContent | pour définir le contenu de l'application en Compose, et configure le
NavController et le NavHost. Un théme Material enveloppe I'ensemble pour appliquer le style Material
Design par défaut.

package com.example.puzzlegame

import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.compose.material3.MaterialTheme

import androidx.compose.runtime.Composable

import androidx.compose.ui.platform.LocalContext

import androidx.navigation.compose.rememberNavController
import androidx.navigation.NavType

import androidx.navigation.compose.NavHost

import androidx.navigation.compose.composable

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
// Initialisation de la composante principale de l'application
setContent {
MaterialTheme {
// Création du contréleur de navigation Compose
val navController = rememberNavController()
// Définition du graph de navigation avec deux destinations:
Splash et Game
NavHost(navController = navController, startDestination =
"splash") {
// Ecran d'accueil (SplashScreen)

composable(route = "splash") {
SplashScreen(
onStart = {
// Navigation vers 1'écran de jeu lorsqu'on
appuie sur "Démarrer"
navController.navigate("game")

¥
)
b
// Ecran principal du jeu (GameScreen)
composable(route = "game") {
GameScreen()
b

Explications : Dans | onCreate , au lieu d'utiliser un layout XML, on appelle setContent pour définir I'UI
en Compose. Le contenu est englobé dans MaterialTheme | (ici on utilise le theme Material3 par défaut)
afin de bénéficier des styles Material Design. On crée ensuite un | navController \via
rememberNavController() . Le [NavHost configure les routes de lapplication : la route initiale
"splash" | affiche le composable |SplashScreen, et la route | "game" affiche le composable
GameScreen . Le paramétre |onStart passé a SplashScreen| est une lambda qui utilise
navController.navigate("game") pour passer a l'écran du jeu lorsque [lutilisateur clique sur le
bouton démarrer. Ainsi, aucune transaction de fragment ou d’ Activity n'est requise : la navigation entre
écrans est déclarative et gérée par Compose Navigation.

SplashScreen.kt - Ecran d’accueil animé

Le composant SplashScreen correspond a I'écran de démarrage de l'application. Son rble est d'afficher une
animation d'introduction de maniére ludique avant d'accéder au jeu. Dans notre cas, le SplashScreen
montre le drapeau de la Sierra Leone dessiné grace a Compose, une barre de progression animée
simulant un chargement, et un bouton Commencer (ou Démarrer) pour passer a l'écran suivant. Ce
composable utilise un | onStart passé en paramétre pour notifier l'activité ou le contréleur de navigation
que l'utilisateur souhaite passer a la suite.

Le code ci-dessous illustre limplémentation de |SplashScreen. On y retrouve [lutilisation de
LaunchedEffect pour animer progressivement la barre de chargement. La barre (composable
FillBar) va de 0% a 100% en quelques secondes, puis le texte du bouton "Commencer" apparait
pleinement (on pourrait choisir de n‘afficher le bouton qu'aprés le chargement, selon le design souhaité).
L'utilisateur peut cliquer sur le bouton a tout moment pour appeler la lambda onStart et naviguer vers
I'écran de jeu.

package com.example.puzzlegame.ui

import androidx.compose.foundation.layout.*
import androidx.compose.material3.Button
import androidx.compose.material3.Text
import androidx.compose.runtime.*

import androidx.compose.ui.Alignment

import androidx.compose.ui.Modifier

import androidx.compose.ui.unit.dp

@Composable

fun SplashScreen(onStart: () -> Unit) {
// Etat local pour la progression de la barre (0.0f & 1.0f)
var progress by remember { mutableStateOf(0f) }

// Effet lancé une seule fois a l'entrée dans la Composition pour animer la
barre
LaunchedEffect(Unit) {
// Simulation d'un chargement progressif
for (i in 0..100) {
progress = i / 100f // met a jour la progression
kotlinx.coroutines.delay(20) // petite pause pour animer (20ms par
étape)
¥
// Optionnel: on pourrait naviguer automatiquement aprés le chargement
si désiré

}

// Mise en page de l'écran d'accueil
Column(
modifier = Modifier
.fillMaxSize()
.padding(32.dp),
verticalArrangement = Arrangement.Center,
horizontalAlignment = Alignment.CenterHorizontally
) A
// Affiche le drapeau de la Sierra Leone
SierraFlag(modifier = Modifier.fillMaxWidth().padding(16.dp))
Spacer(modifier = Modifier.height(24.dp))
// Barre de progression animée avec le pourcentage
FillBar(progress = progress, modifier = Modifier.fillMaxWidth(0.8f))
Spacer(modifier = Modifier.height(48.dp))
// Bouton "Commencer" pour démarrer le jeu
Button(onClick = { onStart() }) {
Text("Commencer le puzzle")

Explications : On utilise une colonne (Column |) centrée verticalement et horizontalement pour disposer
les éléments du SplashScreen. Le composable personnalisé SierraFlag est appelé pour dessiner le
drapeau (ce composant est détaillé dans la section suivante). Ensuite, FillBar | est utilisé pour afficher
une barre de chargement dont la longueur est déterminée par la variable d'état progress | Grace a
LaunchedEffect , cette variable est incrémentée progressivement de 0 a 1 sur une durée d'environ 2
secondes (100 * 20ms). Leffet | LaunchedEffect permet de lancer une coroutine liée au cycle de vie du
composable afin d'exécuter ce type d'animation ou d'action asynchrone une fois a l'affichage 1 . Enfin, un
bouton Material3 (Button) avec le texte "Commencer le puzzle" est affiché. Lorsque l'utilisateur clique
dessus, la lambda onStart() est exécutée, ce qui déclenchera la navigation vers I'écran de jeu (comme
configuré dans MainActivity).

Notons que le SplashScreen est stateless vis-a-vis de l'extérieur : il ne gére pas de navigation directement, il
se contente dappeler onStart fourni par lappelant. Il gere uniquement un état interne local
(progress) pour l'animation. Ce composant est ainsi réutilisable et facile a tester car il n'a pas de
dépendances externes directes, mis a part le callback de navigation.

SierraFlag.kt - Dessin du drapeau de la Sierra Leone

Le fichier SierraFlag.kt contient un composable qui dessine le drapeau de la Sierra Leone. C'est un exemple
de dessin simple avec Jetpack Compose, utilisant 'API Canvas pour dessiner des formes géométriques. Le
drapeau de la Sierra Leone se compose de trois bandes horizontales de tailles égales (verte en haut,
blanche au milieu, bleue en bas). Ce composable n'a pas d'état interne : il se contente de dessiner le
drapeau dans l'espace qui lui est alloué.

Voici le code source de SierraFlag :

package com.example.puzzlegame.ui

import androidx.compose.foundation.Canvas

import androidx.compose.runtime.Composable

import androidx.compose.ui.Modifier

import androidx.compose.ui.geometry.Size

import androidx.compose.ui.graphics.Color

import androidx.compose.ui.graphics.drawscope.drawRect

@Composable
fun SierraFlag(modifier: Modifier = Modifier) {
// Canvas permet de dessiner directement des formes
Canvas(modifier = modifier) {
// Calcul de la hauteur d'une bande (1/3 de la hauteur totale)
val stripeHeight = size.height / 3f
// Bande verte (en haut)

https://developer.android.com/develop/ui/compose/side-effects#:~:text=,the%20scope%20of%20a%20composable

drawRect(
color = Color(OxFF1EB53A), // vert (couleur hexadécimale
du drapeau)
size = Size(size.width, stripeHeight),// pleine largeur, 1/3 hauteur
topLeft = androidx.compose.ui.geometry.0ffset(0f, Of)

)
// Bande blanche (au milieu)
drawRect(
color = Color.White,
size = Size(size.width, stripeHeight),
topLeft = androidx.compose.ui.geometry.0ffset(0f, stripeHeight)
)
// Bande bleue (en bas)
drawRect(
color = Color(0xFF0072C6), // bleu
size = Size(size.width, stripeHeight),
topLeft = androidx.compose.ui.geometry.O0ffset(0f, 2 * stripeHeight)
)

Explications : Le composable utilise Canvas de Compose pour dessiner directement sur une surface. A
I'intérieur du lambda de dessin, on utilise la taille disponible (size) pour calculer la hauteur de chaque
bande (un tiers de la hauteur totale). On appelle drawRect | trois fois pour dessiner trois rectangles de la
largeur totale du canvas et de hauteur | stripeHeight :le premier en vert (positionné a l'origine | (0,0)),
le second en blanc (positionné a |y = stripeHeight)), et le dernier en bleu (positionné a 'y = 2 *
stripeHeight). Les couleurs utilisées correspondent aux couleurs officielles du drapeau de la Sierra
Leone. Ce composable est purement visuel et sans état : quel que soit I'écran ou le conteneur ou on le
place, il dessinera toujours le méme drapeau. Son Modifier | peut étre spécifié a I'appel pour ajuster sa
taille (par exemple, on I'a appelé dans le SplashScreen avec fillMaxWidth().height(...) pour qu'il
prenne la largeur de I'écran et une hauteur proportionnelle).

FillBar.kt - Barre de progression personnalisée avec texte

La composante FillBar réalise une barre de progression horizontale affichant en son centre le pourcentage
d'avancement. Cest un composable réutilisable qui prend en paramétre un niveau de progression
(progress) sous forme de | Float | (allant de 0.0 a 1.0). Ici, nous l'utilisons dans le SplashScreen pour
montrer une animation de chargement. La barre est dessinée de facon personnalisée pour illustrer la
flexibilité de Compose : on utilise deux | Box | imbriquées pour créer une barre grise en arriére-plan et une
barre colorée par-dessus dont la largeur dépend de la progression. Un texte est centré pour afficher le
pourcentage (arrondi a l'entier le plus proche).

package com.example.puzzlegame.ui

import androidx.compose.foundation.background
import androidx.compose.foundation.layout.*

import androidx.compose.foundation.shape.RoundedCornerShape
import androidx.compose.material3.MaterialTheme

import androidx.compose.material3.MaterialTheme.colorScheme
import androidx.compose.material3.MaterialTheme.typography
import androidx.compose.material3.Text

import androidx.compose.runtime.Composable

import androidx.compose.ui.Modifier

import androidx.compose.ui.graphics.Color

import androidx.compose.ui.unit.dp

@Composable
fun FillBar(progress: Float, modifier: Modifier = Modifier) {
// Contrainte pour que la valeur de progression soit entre 0 et 1
val clampedProgress = progress.coerceIn(0f, 1f)
// Conteneur de la barre (barre de fond grise arrondie)
Box(
modifier = modifier
.height(20.dp) // hauteur fixe de la barre
.background(color = Color.LightGray, shape =
RoundedCornerShape(10.dp))
) A
// Barre de remplissage colorée par-dessus, largeur proportionnelle a la
progression
Box(
modifier = Modifier
.fillMaxHeight()
.fillMaxWidth(fraction = clampedProgress) // fraction de la
largeur totale
.background(color = Color(0xFF0066CC), shape =
RoundedCornerShape(10.dp))

)
// Texte affichant le pourcentage (centré dans la Box par défaut)
Text(
text = "${(clampedProgress * 100).toInt()}%",
modifier = Modifier.align(Alignment.Center),
color = Color.White,
style = MaterialTheme.typography.bodySmall
)

Explications : La fonction | Fil11Bar utilise un | Box | principal qui sert de fond de barre (en gris clair, avec
des coins arrondis de rayon 10dp). A I'intérieur, un second Box | représente la partie remplie de la barre : on
lui applique fillMaxWidth(fraction = progress) pour que sa largeur soit un pourcentage de la
largeur du parent, égal a la progression. Sa hauteur remplit la hauteur du parent (fillMaxHeight())etil
a le méme shape arrondi, de sorte que la barre remplie épouse les coins arrondis du fond. On lui donne une
couleur bleue personnalisée (ici un bleu moyen, code hex #0066CC). Ensuite, un composant | Text ' est

placé avec Modifier.align(Alignment.Center) | pour se superposer au centre du Box parent. Il
affiche la valeur de | progress | en pourcentage (convertie en entier). Le texte est en blanc pour étre lisible
sur le fond coloré, et utilise le style bodySmall |du théme Material3 pour étre de taille appropriée.

Ce composable est stateless : il ne stocke aucun état en interne, il se contente d'afficher la vue en fonction
du parametre | progress recu. Ainsi, c'est le parent (par exemple SplashScreen) qui gere I'évolution de
progress et provoque la recomposition de | FillBar |. Ce principe est conforme a la bonne pratique de
state hoisting (remontée d'état) : la logique de calcul du pourcentage est externalisée, et FillBar n'est
qu'une vue pure 2 .

PuzzleFetcher.kt - Formulaire de récupération d’'un puzzle

Le composant PuzzleFetcher est un élément clé de I'écran de jeu : il fournit une petite interface permettant
a lutilisateur de saisir son email, de choisir la difficulté du puzzle via un slider, puis de lancer la
récupération du puzzle auprés de I'API. Ce composant gére plusieurs états : le texte de I'email saisi, la
valeur de difficulté sélectionnée, un état de validation (email valide ou non), et I'état de chargement (en
cours de récupération ou non). Il est concu de maniére a ne pas contenir |'état final du puzzle lui-méme,
mais a transmettre celui-ci via un callback onNewPuzzle | lorsque I'API a répondu. Ainsi, le puzzle chargé
sera « remonté » au niveau supérieur (GameScreen) qui pourra alors l'afficher.

Le code suivant implémente | PuzzleFetcher . Pour simplifier, nous simulons l'appel réseau avec un délai
(comme si on attendait la réponse de I'API) et nous générons un objet Puzzle factice. Dans une
application réelle, la fonction | fetchPuzzleFromApi(email, difficulty) | serait implémentée pour
effectuer une requéte HTTP et récupérer les données du puzzle.

package com.example.puzzlegame.ui

import androidx.compose.foundation.layout.*

import androidx.compose.material3.*

import androidx.compose.runtime.*

import androidx.compose.ui.Modifier

import androidx.compose.ui.platform.LocalContext
import androidx.compose.ui.text.input.TextFieldValue
import androidx.compose.ui.unit.dp

import kotlinx.coroutines.delay

@Composable
fun PuzzleFetcher(onNewPuzzle: (Puzzle) -> Unit) {
// Etat pour 1l'email saisi
var email by remember { mutableStateOf("") }
// Etat pour la difficulté (nombre de piéces par c6té du puzzle)
var difficulty by remember { mutableStateOf(3) }
// Etat pour indiquer si on est en cours de chargement (appel API en cours)
var isLoading by remember { mutableStateOf(false) }
// Etat pour un éventuel message d'erreur
var errorMessage by remember { mutableStateOf<String?>(null) }

https://developer.android.com/develop/ui/compose/state#:~:text=A%20composable%20that%20uses%20,reusable%20and%20harder%20to%20test

// Validation basique de l'email (doit contenir "@" et un ".")
val isEmailValid = email.contains("@") && email.contains(".")

Column(modifier = Modifier.fillMaxWidth().padding(16.dp)) {
// Champ de texte pour l'email
OutlinedTextField(
value = email,
onValueChange = {
email = it
errorMessage = null // réinitialise l'erreur lorsqu'on modifie

1'email
}
label = { Text("Email") },
isError = lisEmailValid && email.isNotEmpty(),
modifier = Modifier.fillMaxWidth()
)
if (!isEmailValid && email.isNotEmpty()) {
Text(
text = "Adresse email invalide",
color = MaterialTheme.colorScheme.error,
style = MaterialTheme. typography.bodySmall
)
}

Spacer(modifier = Modifier.height(16.dp))
// Slider pour la difficulté (de 2 a 5)
Text(text = "Difficulté : $difficulty x $difficulty pieces")
Slider(
value = difficulty.toFloat(),
onValueChange = { difficulty = it.toInt() },
valueRange = 2f..5f,
steps = 3 // valeurs entieres 2, 3, 4, 5
)
Spacer(modifier = Modifier.height(8.dp))
// Bouton de chargement du puzzle
Button(
onClick = {
if (!isEmailValid) {
errorMessage = "Veuillez entrer un email valide."
return@Button
}
// Démarre le chargement du puzzle (appel réseau simulé)
isLoading = true
errorMessage = null
}
enabled = !isloading,
modifier = Modifier.fillMaxWidth()
) |

Text(if (isLoading) "Chargement..." else "Charger le puzzle")
}
// Affichage d'un indicateur de progression pendant le chargement
if (isLoading) {
LaunchedEffect(Unit) {
try {
// Simulation: attente de 2 secondes pour imiter un appel
réseau
delay(2000)
// Génération d'un puzzle factice une fois "récupéré"
val puzzle = Puzzle.generateDummyPuzzle(difficulty)
onNewPuzzle(puzzle) // envoie le puzzle récupéré vers
1'extérieur
} catch (e: Exception) {
errorMessage = "Erreur lors de la récupération du puzzle."
} finally {
isLoading = false

¥
LinearProgressIndicator(modifier = Modifier.fillMaxWidth())

}
// Affichage d'un message d'erreur s'il y a lieu
errorMessage?.let { msg ->

Text(text = msg, color = MaterialTheme.colorScheme.error)

Explications : Le composable est structuré en colonne avec du padding. Le champ de texte
(OutlinedTextField) est lié a la variable d'état |email . Une validation sommaire vérifie que I'email
contientaumoinsun" @ "etun" . ". Sil'utilisateur a commencé a saisir quelque chose et que la validation
échoue, on affiche un texte d'erreur sous le champ. Le slider de difficulté utilise une valeur entiére entre 2 et
5 (ces valeurs correspondent au nombre de piéces par c6té du puzzle, par exemple 3 signifie un puzzle 3x3
donc 9 piéces). Le texte au-dessus du slider indique la taille actuelle sélectionnée.

Le bouton "Charger le puzzle" est cliquable seulement si on n'est pas déja en cours de chargement
(enabled = !islLoading). Au clic, on vérifie la validité de I'email : si invalide, on met a jour un message
d'erreur et on ne poursuit pas. Si tout est bon, on met | isLoading = true | on réinitialise les anciens
messages d'erreur, et on déclenche l'opération de chargement du puzzle.

Lorsque islLoading passe a true |, un LaunchedEffect est lancé (avec (Unit en clé pour quiil
s'exécute immédiatement une seule fois) afin de faire 'appel réseau de maniére asynchrone sans bloquer
I'UL Ici, on utilise | delay(2000) | pour simuler un temps de réponse. Aprés ce délai, on crée un puzzle fictif
via Puzzle.generateDummyPuzzle(difficulty) | (nous définirons cette fonction dans la classe Puzzle
pour générer une liste de pieces factices). Puis on invoque | onNewPuzzle(puzzle) afin de transmettre le
puzzle récupéré au niveau supérieur (GameScreen). Quoi qu'il arrive (succés ou exception), on met
isLoading = false dansle bloc finally pour cacher l'indicateur de chargement et réactiver I'UL En

10

paralléle, pendant que islLoading est vrai, on affiche un LinearProgressIndicator (barre de
progression horizontale indéterminée) sous le bouton pour signaler visuellement que le chargement est en
cours. Si une erreur s'est produite (par exemple, une exception dans l'appel réseau), on affiche le message
d'erreur stocké dans | errorMessage en rouge en bas du formulaire.

Ce composant gére son état local (email, difficulté, chargement, erreur) mais il externalise I'état global
du puzzle. En effet, une fois le puzzle obtenu, il est passé via le callback onNewPuzzle plutét que d'étre
affiché directement ici. Cette conception respecte la séparation des responsabilités : PuzzleFetcher
s'occupe de la saisie et du fetch, puis c'est le parent qui décidera comment utiliser le Puzzle . On applique
ici le principe de state hoisting (remontée d'état) et de composable sans état interne pour la donnée métier
principale 2 . Le composable en lui-méme reste réutilisable pour n'importe quelle logique de récupération
de puzzle similaire, en passant une fonction de traitement différente si nécessaire.

Puzzle.kt - Représentation des données du puzzie

La classe de données Puzzle sert a modéliser le puzzle récupéré depuis I'APL Elle contient les informations
nécessaires pour afficher et résoudre le puzzle : typiquement la liste des morceaux de l'image (ici
représentés par des URLs d'images qui seront chargées), et la dimension de la grille du puzzle (par exemple
3 pour un puzzle 3x3). Selon I'API réelle, on pourrait avoir d’autres champs (un identifiant, le nom du puzzle,
etc.), mais pour notre projet nous nous limitons a ces éléments.

Ci-dessous le code de | Puzzle.kt . Ony inclut également une fonction utilitaire generateDummyPuzzle
pour générer un puzzle factice a partir d'une difficulté donnée (cette fonction nous aide a simuler une
réponse de I'API dans notre démonstration sans accés réseau effectif).

package com.example.puzzlegame.model

data class Puzzle(
val imageUrls: List<String>, // URLs de chaque piéce du puzzle (ordonnées
par position correcte)
val gridSize: Int // taille de la grille (ex: 3 pour 3x3)
) {
companion object [{]
// Géneére un puzzle factice de dimension n x n pour test (images
placeholder)
fun generateDummyPuzzle(n: Int): Puzzle {
// On utilise des images de placeholder en ligne (par exemple via un
service public)
val totalPieces = n * n
val urls = List(totalPieces) { index ->
// Génére une URL d'image arbitraire avec l'index pour
différencier (ici images placeholder via https://picsum.photos)
"https://picsum.photos/seed/puzzle$index/300/300"
}

return Puzzle(imageUrls = urls, gridSize = n)

11

https://developer.android.com/develop/ui/compose/state#:~:text=A%20composable%20that%20uses%20,reusable%20and%20harder%20to%20test

Explications : | Puzzle est une data class simple. Le champ imageUrls | est une liste de chaines de
caracteres représentant les liens vers les images de chaque piéce. On suppose que ces images sont carrées
et toutes de la méme taille (par exemple 300x300 pixels comme indiqué dans I'URL placeholder). Lordre de
cette liste correspond a l'ordre correct des piéces (c'est-a-dire que l'image a I'index 0 correspond a la position
[0,0] dans la grille une fois le puzzle résolu, lindex 1 correspond a la position [0,1], etc.). Le champ
gridSize | indique combien de piéces par c6té compose le puzzle (ce qui définit la dimension de la grille :
gridSize x gridSize pieces).

La fonction generateDummyPuzzle(n) | est dans un companion object pour pouvoir étre appelée
sans instance. Elle crée une liste de totalPieces URLs en utilisant un service d'images aléatoires (ici
Picsum Photos, qui retourne une image aléatoire différente pour chaque URL unique). On incorpore l'index
du morceau dans I'URL pour varier chaque image. Ainsi, si l'on appelle
Puzzle.generateDummyPuzzle(3) , on obtiendra un Puzzle de 9 piéces (3x3) avec 9 URL distinctes
pointant vers des images aléatoires. NB: Dans un contexte réel, I'API fournirait probablement déja soit
I'image globale a découper, soit directement les images découpées. Ici, on simule le second cas ou chaque
piece est une image séparée disponible via une URL.

JigsawPiece.kt - Composable pour afficher une piéce du puzzle

JigsawPiece est un composable responsable de l'affichage individuel d'une piéce de puzzle, c'est-a-dire
d’'une image carrée. Il doit également gérer I'état de chargement de l'image (afficher un indicateur visuel
tant que limage n'est pas chargée). Pour cela, on utilise la bibliotheque Coil qui s'intégre bien avec
Compose pour charger des images a partir d'URL. En particulier, Coil fournit le composable
SubcomposeAsyncImage | permettant de spécifier un contenu de remplacement (placeholder) pendant le
chargement.

Notre | JigsawPiece | prend en parameétre 'URL de l'image de la piéce, ainsi que deux indicateurs booléens
optionnels : isSelected et isCorrect . Ces drapeaux permettent de savoir si la piéce est actuellement
sélectionnée par le joueur et si elle est a sa position correcte, afin d'afficher des bordures colorées en
conséquence (par exemple une bordure jaune pour la piéce sélectionnée, une bordure verte pour une piéce
bien placée). Le composable ajuste son apparence en fonction de ces états mais ne gere pas lui-méme la
logique de sélection ou de vérification (cela est du ressort du JigsawManager).

Voici I'implémentation de JigsawPiece |:

package com.example.puzzlegame.ui

import androidx.compose.foundation.BorderStroke

import androidx.compose.foundation.layout.Box

import androidx.compose.foundation.layout.fillMaxSize
import androidx.compose.foundation.shape.RectangleShape
import androidx.compose.material3.Card

12

import androidx.compose.material3.CardDefaults

import androidx.compose.material3.CircularProgressIndicator
import androidx.compose.runtime.Composable

import androidx.compose.ui.Modifier

import androidx.compose.ui.graphics.Color

import coil.compose.SubcomposeAsyncImage

@Composable
fun JigsawPiece(
imageUrl: String,
isSelected: Boolean,
isCorrect: Boolean,
modifier: Modifier = Modifier
) {
// Choix de la couleur de bordure selon 1l'état
val borderColor: Color = when {
isSelected -> Color.Yellow // piece sélectionnée (jaune)
isCorrect -> Color.Green // piéce a la bonne place (vert)
else -> Color.Transparent // pas de bordure visible autrement

// On peut utiliser un Card de Material3 pour bénéficier d'une bordure et
d'un fond
Card(
modifier = modifier,
shape = RectangleShape, // piéces carrées sans arrondi
border = BorderStroke(width = 2.dp, color = borderColor),
colors = CardDefaults.cardColors(containerColor = Color.LightGray) //
fond gris clair par défaut
) A
Box {
// Chargement asynchrone de 1'image de la piéce
SubcomposeAsyncImage(
model = imageUrl,
contentDescription = "Piéce du puzzle",
loading = {
// Affiche un indicateur de chargement tant que 1'image
n'est pas chargée
Box(modifier = Modifier.fillMaxSize(), contentAlignment =
Alignment.Center) {
CircularProgressIndicator(color = Color.DarkGray)

}I

modifier = Modifier.fillMaxSize(),
contentScale = ContentScale.Crop

13

Explications : Le composable utilise un composant | Card de Material3 comme conteneur de la piece. Les
Card proposent facilement des bordures (border) et une couleur de fond (containerColor | via
CardDefaults.cardColors). Ici, on définit la forme (| RectangleShape) sans arrondis pour que les
pieces soient bien carrées. La bordure a une épaisseur de 2dp et sa couleur dépend de I'état de la piéce :
jaune si la piece est sélectionnée, verte si elle est correctement placée, sinon transparente (pas de bordure
visible). Le fond par défaut est gris clair, ce qui sera visible uniquement si I'image met du temps a charger
ou en cas d'erreur, afin d'avoir un aplat neutre.

A lintérieur de la carte, on utilise SubcomposeAsyncImage (fournie par Coil Compose) pour charger
I'image a partir de imageUrl |. Le parameétre | loading définit le contenu affiché pendant que I'image se
charge : nous mettons un | CircularProgressIndicator centré qui tournera pour indiquer le
chargement en cours. Une fois I'image chargée, celle-ci remplacera le contenu de | loading . Nous utilisons
contentScale = ContentScale.Crop | pour que limage remplisse bien l'espace de la piéce en
recadrant si nécessaire (ainsi chaque piéce reste carrée et couvre toute la carte).

Le composable JigsawPiece |est dépendant de I'état qui lui est fourni (isSelected et isCorrect),
mais il ne gere pas détat en interne. Cest le parent (la grille de puzzle) qui décide quelle piece est
sélectionnée et quelles piéces sont a la bonne place, et qui appelle JigsawPiece en conséquence. Cette
séparation permet de changer la logique de sélection sans modifier le composant d'affichage de la piéce.

Jigsaw.kt - Affichage de la grille de puzzle

Le composant Jigsaw est chargé de disposer I'ensemble des piéces du puzzle sur une grille carrée. Il regoit
en parametre le puzzle a afficher (une instance de | Puzzle)) ainsi qu'une instance de JigsawManager | qui
contient I'état courant de la disposition des piéces et la logique pour échanger les piéces. | Jigsaw va
s'appuyer sur les données de | JigsawManager | pour savoir dans quel ordre afficher les pieéces et comment
réagir aux interactions de l'utilisateur (par exemple, lorsqu'une piéce est cliquée pour étre sélectionnée ou
échangée).

Dans une implémentation Compose moderne, on pourrait utiliser une LazyVerticalGrid pour générer la
grille, mais pour plus de pédagogie et de contrdle nous allons construire la grille “a la main” en utilisant des
colonnes et des lignes (Column | contenant des | Row |). Cela permet de parcourir toutes les positions de 0 a
gridSize*gridSize - 1| et de placer un composable |JigsawPiece| a chaque position
correspondante.

Le code de | Jigsaw est présenté ci-dessous :

package com.example.puzzlegame.ui
import androidx.compose.foundation.clickable

import androidx.compose.foundation.layout.*
import androidx.compose.runtime.Composable

14

import androidx.compose.ui.Modifier

@Composable
fun Jigsaw(puzzle: Puzzle, manager: JigsawManager, modifier: Modifier =
Modifier) {
val gridSize = puzzle.gridSize
Column(modifier = modifier.fillMaxWidth()) {
// Parcours des rangées du puzzle
for (row in 0 until gridSize) {
Row(modifier = Modifier.fillMaxWidth()) {
// Parcours des colonnes pour chaque piece de la rangée
for (col in 0 until gridSize) {
val positionIndex = row * gridSize + col
// L'index de 1'image a afficher a cette position selon la
permutation courante
val imageIndex = manager.arrangement[positionIndex]
// Détermination des états de bordure
val isCorrect = (imageIndex == positionIndex)
val isSelected = (manager.firstSelectedIndex ==

positionIndex)
// Composable de la piéce avec gestion du clic
JigsawPiece(
imageUrl = puzzle.imageUrls[imageIndex],
isSelected = isSelected,
isCorrect = isCorrect,
modifier = Modifier
.weight(1f) // chaque piece partage
équitablement 1l'espace horizontal
.aspectRatio(1f) // chaque piéece est
carrée (hauteur = largeur)
.clickable {
// Gestion du clic sur une piéce : délégue au
JigsawManager
manager .onTileClicked(positionIndex)
}
)
}
}
}
}
by

Explications : On récupére | gridSize |depuis le puzzle pour savoir combien de lignes et colonnes afficher.
On crée une | Column occupant toute la largeur disponible. Pour chaque numéro de ligne de 0 a gridSize-1,
on génére une Row . A lintérieur de chaque ligne, on itére sur chaque colonne de 0 & gridSize-1 et on
calcule l'index linéaire de la position (positionIndex = row * gridSize + col).

15

Ensuite, on consulte manager .arrangement a cetindex pour connaitre imagelIndex |, c'est-a-dire I'index
réel de limage qui doit étre placée a cette position dans l'état actuel du puzzle. Par exemple, si
manager .arrangement[0] == 5/ cela signifie que la piéce qui devrait étre a la position 0 (coin haut
gauche) est actuellement la piece d'index 5 (donc la mauvaise piéce est 13, le puzzle est mélangé).

On détermine deux booléens : | isCorrect | est vrai si la piece a cette position est la bonne (c'est-a-dire si

imageIndex == positionIndex), et|isSelected |est vrai si cette position correspond a lindex de la
piece sélectionnée actuellement par le joueur (manager.firstSelectedIndex). Ces indicateurs sont
passés a| JigsawPiece afin qu'il affiche éventuellement une bordure colorée.

Pour l'affichage, chaque JigsawPiece | est contenu dans un Modifier.weight(1f) a lintérieur d'une
Row, ce qui fait que les piéces se répartissent équitablement sur la largeur de l'écran. Lajout de
aspectRatio(1f) assure que chaque piece est rendue dans un conteneur carré (la hauteur de la Row
s'adapte pour respecter le ratio 1:1 en fonction de la largeur disponible pour chaque piece). Ainsi, la grille
sera toujours carrée et les pieces uniformément dimensionnées.

Le Modifier.clickable entoure chaque piéce pour gérer les interactions utilisateur. Au clic sur une
piéce, on appelle manager.onTileClicked(positionIndex) - c’est une méthode du JigsawManager
qui encapsule la logique de sélection/échange des piéces (décrite dans la section suivante). En confiant la
gestion du clic au manager, on isole la logique du jeu en dehors de I'UL L'UI (| Jigsaw) se contente de
déduire l'état visuel (isSelected , | isCorrect) en fonction de I'état du manager, et de demander au
manager d'actualiser |'état lorsque l'utilisateur agit.

En résumé, Jigsaw est un composable dumb UI (composable présentoir) qui affiche la grille de piéces en
se basant sur I'état du puzzle fourni par | JigsawManager | Il na pas d'état propre et reflete simplement le
contenu de manager.arrangement . Cela facilite la compréhension : tout le comportement interactif se
trouve centralisé dans | JigsawManager .

JigsawManager.kt - Logique et état du puzzle

La classe JigsawManager est le coeur de la logique du puzzle. Elle n'est pas un composant UI (pas un
Composable), mais une classe Kotlin standard qui gére : - L'état courant de la permutation des pieces
(arrangement), c'est-a-dire l'ordre dans lequel les images sont disposées dans la grille. - La sélection d'une
premiére piece a échanger (| firstSelectedIndex). - La logique d’échange de deux piéces sélectionnées.
- La vérification de la résolution du puzzle (toutes les piéces a la bonne place). - D'éventuelles informations
supplémentaires comme le nombre de mouvements effectués (on peut le conserver a titre indicatif).

Cette classe interagit avec I'UI via ses propriétés observables. En utilisant des types mutables observables
de Compose ((MutableState ou mutableStatelListOf), on s'assure que I'UI (les composables) se
mettra a jour automatiquement quand l'état du puzzle change. | JigsawManager peut étre initialisé a
chaque nouveau puzzle, et exposer les informations nécessaires a I'UI (par exemple, pour mettre une
bordure verte quand une piéce est bien placée, il suffit de comparer index et valeur dans | arrangement
c6té UI, comme on l'a fait).

Voici le code de | JigsawManager | :

16

package com.example.puzzlegame.ui
import androidx.compose.runtime.mutableStatelListOf

class JigsawManager(puzzle: Puzzle) {

// Liste observable représentant 1l'ordre actuel des pieces (permutation des
indices)

val arrangement = mutableStatelListOf<Int>()

// Index de la premiére piéce sélectionnée (ou null si aucune piéce n'est en
cours de sélection)

var firstSelectedIndex: Int? = null

private set

init {
// Initialisation de l'arrangement avec une permutation aléatoire des
indices 0..n-1
val indices = (0 until puzzle.imageUrls.size).tolList()
arrangement.addAll(indices.shuffled())
// S'assurer de ne pas démarrer sur un puzzle déja résolu par hasard
if (isSolved()) {
arrangement.shuffle()

// Appelé lorsqu'une piéce a la position index est cliquée
fun onTileClicked(positionIndex: Int) {
if (firstSelectedIndex == null) {
// Aucune piéce encore sélectionnée, on sélectionne celle cliquée
firstSelectedIndex = positionIndex
} else {
// Une premiére piece était déja sélectionnée, on échange avec la

nouvelle
swapTiles(firstSelectedIndex!!, positionIndex)
// Réinitialiser la sélection
firstSelectedIndex = null
}
}

// Permute deux pieces dans l'arrangement
private fun swapTiles(index1: Int, index2: Int) {
if (index1 == index2) return // si on clique deux fois la méme piéce,
on ne fait rien
val temp = arrangement[index1]
arrangement[index1] = arrangement[index2]
arrangement[index2] = temp

17

// Vérifie si le puzzle est résolu (toutes les pieces a leur place)
fun isSolved(): Boolean {
// Le puzzle est résolu si chaque valeur est égale a son index (position
correcte)
return arrangement.indices.all { pos -> arrangement[pos] == pos }

Explications : Dans le constructeur (init), on crée d'abord une liste | indices contenant tous les indices
possibles des piéces (0 a nombreDePieces-1). On mélange cette liste aléatoirement (| shuffled()) et on
I'ajoute a | arrangement |. Ainsi, initialement, les piéces sont dans un ordre aléatoire. On ajoute une petite
vérification : si par hasard ce mélange était déja la solution (trés peu probable, mais possible
statistiquement), on mélange a nouveau (| shuffle()) pour s'assurer de ne pas commencer avec le puzzle
déja résolu.

La propriété arrangement est une mutableStatelListOf<Int> - c'est une liste observable par
Compose. Toute modification (ajout, échange, etc.) entraine une notification de Compose et donc une
recomposition des composables qui l'utilisent. Cela permet a I'UI (le composant | Jigsaw) de se mettre a
jour automatiquement lorsque l'on échange des piéces.

firstSelectedIndex garde la trace de la premiére piéce que l'utilisateur a cliquée pour un échange en

cours. Au début, il ny a pas de piece sélectionnée, donc cest 'null. La méthode
onTileClicked(positionIndex) est appelée par I'UI lorsqu'une piéce est cliquée. Si aucune piece
n'‘était sélectionnée (firstSelectedIndex == null|), on enregistre l'index cliqué comme premiere
sélection. Si au contraire une piece était déja sélectionnée, cela signifie que l'utilisateur a cliqué sur une
seconde piéce : on appelle alors | swapTiles pour échanger les deux piéces dans I' arrangement . Apres
l'échange, on remet | firstSelectedIndex | a null ('échange est terminé, plus aucune piéce n'est
« active »).

La méthode privée swapTiles(index1, 1index2) effectue l'échange des éléments de la liste
arrangement aux positions données. On ajoute une condition pour ne rien faire si| index1 == index2
(par exemple, l'utilisateur a double-cliqué la méme piéce, ou cliqué accidentellement deux fois la méme :
dans ce cas pas d'échange a faire). Léchange se fait en trois opérations : sauvegarde temporaire d'une
valeur, assignations croisées. Etant donné que | arrangement est une liste observable, ces changements

vont déclencher la recomposition de Jigsaw , ce qui mettra a jour la grille affichée.

Enfin, la fonction isSolved() retourne | true sile puzzle est résolu, c'est-a-dire si pour chaque position
dans la grille, I'indice de piéce correspond a la méme valeur (ex : a la position 0 on a la piéce 0, position 1 la
piéce 1, etc.). On l'utilise dans l'initialisation pour éviter un état résolu initial, et on pourrait l'utiliser pour, par
exemple, afficher un message de félicitations lorsque | isSolved() | passe a vrai aprés un échange.

Remarque sur I'architecture : | JigsawManager illustre le principe de séparation logique/visuelle. Cest en
quelque sorte notre ViewModel/contrdleur pour le puzzle (bien qu'ici on ne fasse pas appel a la
bibliothéque | ViewModel dAndroid, on pourrait tout a fait intégrer JigsawManager dans un
ViewModel | Compose). LUI (Jigsaw composable) ne fait qu'appeler les méthodes du manager et lire ses

18

propriétés. Cela rend le code plus clair et facilite les tests unitaires de la logique de puzzle sans dépendre de
I'UL

GameScreen.kt - Ecran principal intégrant le puzzle

Le composant GameScreen représente |'écran de jeu complet. Cest sur cet écran que l'utilisateur va : 1.
Utiliser | PuzzleFetcher | pour entrer son email, choisir la difficulté et charger un puzzle. 2. Une fois le
puzzle chargé, voir apparaitre la grille du puzzle (| Jigsaw) et pouvoir interagir pour résoudre le puzzle.

GameScreen orchestre ces deux phases en gardant un état pour le puzzle courant. Au départ, aucun
puzzle n'est chargé, on affiche donc l'interface de PuzzleFetcher | Quand PuzzleFetcher |invoque le
callback f onNewPuzzle | avec un puzzle, GameScreen | met a jour son état interne pour enregistrer le
puzzle. Deés lors, l'interface recomposée affichera le puzzle et plus le formulaire.

On propose également d'afficher un message de réussite lorsque le puzzle est complété, ainsi qu'un bouton
pour éventuellement rejouer (charger un nouveau puzzle). Cela apporte une meilleure expérience
utilisateur.

Voici le code de GameScreen | :

package com.example.puzzlegame.ui

import androidx.compose.foundation.layout.¥*
import androidx.compose.material3.Button
import androidx.compose.material3.Text
import androidx.compose.runtime.*

@Composable
fun GameScreen() {
// Etat du puzzle courant (null si pas encore chargé)
var currentPuzzle by remember { mutableStateOf<Puzzle?>(null) }
// Le manager du puzzle, initialisé lorsqu'un Puzzle est chargé
val jigsawManager = remember(currentPuzzle) {
currentPuzzle?.let { JigsawManager(it) }

Column(modifier = Modifier.fillMaxSize()) {
if (currentPuzzle == null) {
// Afficher le formulaire de chargement si aucun puzzle n'est

présent
PuzzleFetcher (onNewPuzzle = { puzzle ->
currentPuzzle = puzzle
B
} else {
// Un puzzle est chargé, on affiche la grille de jeu
Text(

19

text = "Puzzle ${currentPuzzle!!.gridSize}x$
{currentPuzzle!!.gridSize}",

style = MaterialTheme.typography.titleMedium,

modifier = Modifier.padding(16.dp)

)
// Affichage de la grille du puzzle
Jigsaw(puzzle = currentPuzzle!!, manager = jigsawManager!!,

modifier = Modifier.weight(1f))
// Si le puzzle est résolu, affichage d'un message de félicitations
et bouton rejouer
if (jigsawManager.isSolved()) {
Text(
text = " Puzzle complétée ! ",
style = MaterialTheme.typography.titleMedium,
modifier = Modifier.padding(16.dp)
)
Button(onClick = {
// Réinitialiser 1'état pour rejouer (revenir au formulaire)
currentPuzzle = null
}, modifier = Modifier.padding(16.dp)) {
Text("Nouveau puzzle")

Explications : | GameScreen utilise un var currentPuzzle de type Puzzle? initialisé a null . Grace
a remember | cette variable conservera sa valeur a travers les recompositions (ce qui est nécessaire car lors
d'un appel a| currentPuzzle = puzzle , la fonction recomposera). On crée ensuite un jigsawManager
via | remember(currentPuzzle) { ... } | Le paramétre currentPuzzle | dans remember fait que
chaque fois qu'un nouveau puzzle est affecté, un nouveau JigsawManager sera créé (pour gérer ce
puzzle spécifique). Si | currentPuzzle | est null, on garde | jigsawManager null (on n'en a pas besoin
avant d'avoir un puzzle).

LUI est une colonne qui occupe tout I'écran. Si currentPuzzle | est null, on affiche le composant
PuzzleFetcher . On passe la lambda onNewPuzzle | qui assigne la valeur reque a currentPuzzle .
Notez qu'en assignant | currentPuzzle = puzzle | on change I‘état, ce qui cause la recomposition de
GameScreen | et donc la condition | currentPuzzle == null deviendra fausse.

Une fois un puzzle chargé, la branche | else | est affichée : on montre un titre avec la taille du puzzle (par
exemple "Puzzle 3x3") pour contextualiser. Puis on affiche la grille du puzzle via | Jigsaw , en passant
currentPuzzle!! (on force le non-null car on est dans le cas else ou currentPuzzle n'est pas null) et un
jigsawManager!! (également non-null dans ce contexte) On donne a |Jigsaw un
Modifier.weight(1f) pour qu'il prenne tout l'espace restant disponible sous le titre, permettant a la

20

grille de s'étendre (sans weight(1f) , la grille prendrait juste la place de son contenu et on pourrait avoir
un grand vide en bas si I'écran est plus grand que nécessaire).

Ensuite, on vérifie if (jigsawManager.isSolved()) :sile puzzle est résolu, on affiche un message de
félicitations avec des émojis confettis, ainsi qu'un bouton "Nouveau puzzle". Ce bouton remet

currentPuzzle a null, ce qui a pour effet de réafficher le formulaire PuzzleFetcher (donc l'utilisateur
peut charger un autre puzzle).

Ainsi, l'application offre la possibilité d'enchainer les parties sans redémarrer l'app, en repassant par I'écran
de sélection dés qu'un puzzle est fini. On pourrait améliorer en conservant I'email saisi précédemment, ou
en proposant directement un autre puzzle de méme difficulté, mais cela sort du cadre de base.

Points a noter : GameScreen | ne connait pas les détails de comment | JigsawManager fonctionne, ni
comment | PuzzleFetcher obtient le puzzle - il orchestre simplement les sous-composants en fonction de
I'état. C'est un bon exemple de haut niveau de gestion d'état avec Compose. En particulier, on voit
l'utilisation de | remember | pour maintenir I'état currentPuzzle et l'objet | JigsawManager associé a
travers les recompositions. Lutilisation de | remember (currentPuzzle) | assure qu'un nouveau manager
est créé uniquement quand le puzzle change, et pas a chaque recomposition, évitant de réinitialiser la
permutation du puzzle par inadvertance.

Fichiers build.gradle - Configuration du projet pour Compose et
Navigation

Pour que ce projet fonctionne, il faut s'assurer que la configuration Gradle prend en charge Jetpack
Compose et les bibliotheques utilisées (Material3, Navigation Compose, Coil, etc.). Deux fichiers sont a
configurer : le build.gradle au niveau du projet (Project) et celui du module de l'application (Module app).

build.gradle (Projet)

Le fichier de configuration du projet doit inclure les dépbts Maven de Google et Maven Central (qui
contiennent les artefacts Jetpack). Cela se fait généralement dans le settings.gradle ou le build.gradle
de projet selon la version de Gradle, mais I'important est d'avoir google() et mavenCentral() |dansla
liste des dépbts. De plus, on s'assure d'appliquer le plugin Kotlin Android et d'avoir la bonne version du
plugin Compose.

// build.gradle (Project-level)
buildscript {
dependencies {
classpath "com.android.tools.build:gradle:8.0.2"
classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.8.21"

i

allprojects {
repositories {

21

google()
mavenCentral()

Note : Les versions ci-dessus (Gradle plugin 8.0.2, Kotlin 1.8.21) sont données a titre d'exemple et devraient
correspondre a une configuration compatible avec Compose en 2025. Lessentiel est davoir le plugin Gradle
Android récent et le plugin Kotlin correspondant.

build.gradle (Module app)

Le fichier de configuration de l'application est plus important pour intégrer Compose. On doit y activer
Compose, définir la version du compilateur Compose, et ajouter les dépendances nécessaires.

plugins {
id 'com.android.application’
id 'org.jetbrains.kotlin.android'

android {
compileSdk 33

defaultConfig {
applicationId "com.example.puzzlegame"
minSdk 21
targetSdk 33
versionCode 1
versionName "1.0"
}
// Activation de Jetpack Compose
buildFeatures {
compose true
}
composeOptions {
kotlinCompilerExtensionVersion
"1.4.8" // version du Compiler Extension a adapter selon Compose
}
packagingOptions {
resources {
excludes += "/META-INF/{AL2.0,LGPL2.1}" // Exclusion d'éventuels
duplicats de licences communes

}

dependencies {

22

// Dépendances Jetpack Compose

implementation "androidx.activity:activity-compose:1.7.2"
implementation "androidx.compose.ui:ui:1.4.3"

implementation "androidx.compose.ui:ui-tooling-preview:1.4.3"
implementation "androidx.compose.material3:material3:1.1.0"
// Navigation Compose pour la navigation entre écrans
implementation "androidx.navigation:navigation-compose:2.6.0"
// Coil pour le chargement d'images dans Compose
implementation "io.coil-kt:coil-compose:2.2.2"

// (Optionnel) Intégration ViewModel avec Compose
implementation "androidx.lifecycle:lifecycle-viewmodel-compose:2.6.1"

Détails :

On applique les plugins | com.android.application et org.jetbrains.kotlin.android |
compileSdk | est défini a 33 (ou plus, selon le niveau Android visé). minSdk 21 |estle minimum
supporté par Compose (on pourrait mettre 23+ selon les besoins).
Dans | buildFeatures , on active compose = true |pourinformer Gradle qu'on utilise Jetpack
Compose.
On précise la version de I'extension du compilateur Compose via
composeOptions.kotlinCompilerExtensionVersion . Cette version doit correspondre a la
version des bibliothéques Compose utilisées. Dans I'exemple, on utilise Compose UI 1.4.3 et
Material3 1.1.0, ce qui requiert une version du compiler extension ~1.4.8 (a ajuster en fonction des
notes de version Compose).
Dans les dépendances, on ajoute :
activity-compose quifournit l'activité optimisée pour Compose (ComponentActivity avec
support Compose).
compose.ui et compose.material3 pourles composants Ul et le theme Material3.
compose.ui-tooling-preview | pour avoir la fonction preview (et des outils de debug).
navigation-compose pour la navigation entre écrans en Compose.
coil-compose pour charger les images depuis le web dans les composables.

En option, lifecycle-viewmodel-compose si on compte utiliser des ViewModel avec Compose
(ici non utilisé explicitement, mais souvent utile en architecture MVVM).

On n'oublie pas dinclure google() et mavenCentral() dans les repositories du module
également si nécessaire. Souvent, cela est pris en charge au niveau projet comme montré plus haut.

Avec ces configurations, lors de la compilation, Gradle saura tirer les dépendances de Compose et les
compiler correctement. Jetpack Compose n'utilise pas de vue XML, donc pas besoin de fichiers layout ou de
findViewById |. Tout le rendu UI est décrit dans le code Kotlin via les fonctions Composables.

23

Bonnes pratiques appliquées

Ce projet met en ceuvre un certain nombre de bonnes pratiques de développement avec Jetpack Compose
et Kotlin, que nous résumons ici :

+ Séparation de la logique et de I'UI : La logique du jeu de puzzle est isolée dans | JigsawManager
(classe Kotlin non-UI) tandis que I'UI (composables Jigsaw , JigsawPiece |, etc.) se contente de
refléter |'état fourni par ce manager et de lui déléguer les actions de l'utilisateur. Cette séparation
rend les composables plus simples (sans logique métier complexe) et facilite les tests unitaires de la
logique (puisqu'on peut tester | JigsawManager | sans interface). Cela s'apparente au pattern MVVM
ou le UI observe un ViewModel.

State Hoisting (remontée d'état) et Composables sans état interne : La plupart des composables
définis (SierraFlag , FillBar , JigsawPiece , | Jigsaw) ne stockent pas d'état en interne. IIs
recoivent les données dont ils ont besoin via leurs parametres. Par exemple, | Fil1lBar | affiche une
progression qu'on lui passe, JigsawPiece affiche une image et une bordure selon des indicateurs
passés, etc. Si un composable a besoin d'un état (par exemple PuzzleFetcher pour I'email et la
difficulté), cet état est géré localement mais le résultat final (comme le puzzle récupéré) est
remonté au niveau supérieur (GameScreen). Cest une application du principe de stateless
composables, encouragé par la documentation officielle 2 , pour maximiser la réutilisabilité et la
testabilité. Un composable stateless peut étre réutilisé dans d'autres contextes facilement car il n'a
pas de dépendance cachée.

Gestion de I'état avec remember | et types MutableState : On utilise | remember

{ mutableStateOf(...) } pour créer des états locaux dans les composables (progress dans
SplashScreen, | email / difficulty dans PuzzleFetcher, etc.). Le mécanisme | remember | permet
de conserver la valeur a travers les recompositions successives d'un méme composable. Cela évite
de réinitialiser ces valeurs a chaque fois que I'UI se rafraichit. De méme, on utilise
mutableStatelListOf pour la liste observable des pieces dans JigsawManager . Les types
MutableState et SnapshotStatelList sont observables par Compose : toute modification
provoque automatiquement la mise a jour de l'interface aux endroits ou ces états sont utilisés. Il est
important de noter que l'on évite les collections mutables classiques non observables (ArraylList
etc.) pour stocker I'état UI, conformément aux recommandations Android 3 .

Effets side-effect bien encapsulés (LaunchedEffect & rememberCoroutineScope) : Nous avons
eu recours a | LaunchedEffect pour gérer des opérations asynchrones liées au cycle de vie des
composables:

Dans | SplashScreen ,un LaunchedEffect(Unit) |démarre 'animation de la barre de
progression lorsque I'écran s'affiche. Ce coroutine context est lié a la composable SplashScreen et
sera automatiquement annulé si 'écran est recomposé hors de l'arbre (par exemple si on quitte
I'écran avant la fin de 'animation), évitant ainsi des actions inutiles ou des fuites de coroutine 1 .
Dans | PuzzleFetcher , un| LaunchedEffect(Unit) |a lintérieurdu if (isLoading) |est
déclenché lorsqu'on passe en mode chargement. Il exécute la simulation d'appel réseau en
coroutine, puis remet a jour I'état (via| onNewPuzzle ou message derreur). Utiliser

24

https://developer.android.com/develop/ui/compose/state#:~:text=A%20composable%20that%20uses%20,reusable%20and%20harder%20to%20test
https://developer.android.com/develop/ui/compose/state#:~:text=Caution%3A%20Using%20mutable%20objects%20such,T%3E%3E%60%20and%20the%20immutable%20%60listOf
https://developer.android.com/develop/ui/compose/side-effects#:~:text=,the%20scope%20of%20a%20composable

LaunchedEffect ici garantit que la logique de chargement est exécutée au bon moment et
annulée proprement si l'utilisateur navigue ailleurs.

* Nous aurions pu utiliser rememberCoroutineScope pour lancer la coroutine du fetch directement
dans l'onClick du bouton, ce qui est une autre approche. Ici nous avons choisi LaunchedEffect
couplé a l'état | isLoading pour bien découpler la logique d'appel réseau de I'événement d'onClick.
Les deux approches sont valides, I'essentiel étant de respecter le cycle de Compose.

Compose Navigation pour la navigation d'écran : Au lieu d'utiliser des Intents ou fragment
transactions, nous avons utilisé la navigation Compose pour gérer I'écran de splash et I'écran de jeu.
Cela permet de conserver un seul Activity (MainActivity) et de ne recharger que les composables
nécessaires. Cest en ligne avec larchitecture single-Activity recommandée. Lutilisation de la
navigation Compose assure également la conservation d'état des écrans déja visités si on revenait
en arriere (non illustré ici car notre navigation va dans un seul sens sans retour arriere prévu).

Utilisation de bibliothéques Jetpack modernes : Le projet utilise Material3 (la derniéere version de
Material Design), Coil pour le chargement dimages (privilégié par rapport a Glide/Picasso en
contexte Compose pour sa simplicité d'intégration), et les derniéres versions de Compose UL Cela
garantit des performances optimales et un support des bonnes pratiques (par exemple, Material3
apporte les composants OutlinedTextField , Card , etc., adaptés au nouveau design).

Commentaires et code clair : Bien que ce point ne soit pas technique, il s'agit d'une bonne pratique
de maintenir un code lisible. Nous avons ajouté des commentaires explicatifs dans le code source
pour clarifier I'intention de chaque section. Les noms de fonctions et de variables sont choisis pour
étre explicites (PuzzleFetcher , isEmailValid , firstSelectedIndex |, etc.), ce qui améliore
la lisibilité du code, surtout pour un débutant.

En suivant ces bonnes pratiques, I'application gagne en fiabilité et en maintenabilité. Les composables
stateless peuvent étre adaptés, la logique peut évoluer sans impacter I'Ul et vice-versa, et les
comportements asynchrones sont bien maitrisés. La documentation officielle de Jetpack Compose insiste
sur Iimportance de ces principes, par exemple en recommandant d'écrire des composables sans effet de
bord et en utilisant l'architecture déclarative pour I'état et la navigation 4 2 .

Conclusion

Ce tutoriel a présenté en détail la construction d’une application de puzzle en utilisant Jetpack Compose. A
travers les différentes sections, nous avons vu comment définir des composables pour chaque partie de I'UI
(écran d'accueil, formulaire, puzzle), gérer I'état de l'application de maniere réactive, et appliquer des
bonnes pratiques de développement moderne sur Android. Le résultat est un projet structuré ou l'interface
utilisateur est décrite de facon déclarative et concise, et ou la logique métier du puzzle est isolée et
testable.

En résumé, les points clés a retenir sont : - La mise en place de la navigation Compose pour structurer
l'application en écrans sans recourir aux fragments. - La création de composables sur mesure
(SierraFlag, FillBar | JigsawPiece) pour des éléments UI spécifiques, ce qui démontre la
flexibilité de Compose (dessin avec Canvas, custom view). - La gestion du formulaire avec Compose
(TextField | | Slider , boutons) et la gestion de la validation utilisateur en temps réel. - Lutilisation de

25

https://developer.android.com/develop/ui/compose/side-effects#:~:text=A%20side,effect%20free
https://developer.android.com/develop/ui/compose/state#:~:text=A%20composable%20that%20uses%20,reusable%20and%20harder%20to%20test

Coil pour le chargement asynchrone dimages dans Compose, avec indications de chargement. -
Limplémentation de la logique d'un jeu de puzzle (mélange, sélection et échange de pieces, détection de
victoire) en Kotlin pur, intégrée de facon réactive avec I'UL - Les bonnes pratiques comme le state hoisting,
les composables sans état, l'usage approprié de remember et des APIs d'effet (LaunchedEffect), qui
facilitent le développement d'interfaces déclaratives robustes.

Pour aller plus loin, on pourrait améliorer ce projet en intégrant une véritable source de puzzles (une API
REST réelle), en gérant la persistance de I'état (par exemple en cas de rotation d'écran on pourrait sauver/
restaurer | currentPuzzle| via un ViewModel ou | rememberSaveable|)), ou en ajoutant des
fonctionnalités comme un chrono, le comptage de coups, etc. Cependant, méme dans sa forme actuelle, ce
projet sert de base solide pour comprendre comment construire une application compléte avec Jetpack
Compose en 2025, en tirant parti de I'ensemble de I'écosystéeme Android moderne.

Nous espérons que ce document vous aura aidé a comprendre la structure et le code de ce projet de puzzle.
Bon développement sous Android avec Compose !

14 Side-effects in Compose | Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/side-effects

2 3 State and Jetpack Compose | Android Developers

https://developer.android.com/develop/ui/compose/state

26

https://developer.android.com/develop/ui/compose/side-effects#:~:text=,the%20scope%20of%20a%20composable
https://developer.android.com/develop/ui/compose/side-effects#:~:text=A%20side,effect%20free
https://developer.android.com/develop/ui/compose/side-effects
https://developer.android.com/develop/ui/compose/state#:~:text=A%20composable%20that%20uses%20,reusable%20and%20harder%20to%20test
https://developer.android.com/develop/ui/compose/state#:~:text=Caution%3A%20Using%20mutable%20objects%20such,T%3E%3E%60%20and%20the%20immutable%20%60listOf
https://developer.android.com/develop/ui/compose/state

	Documentation du projet de jeu de puzzle (Android, Kotlin, Jetpack Compose)
	Introduction
	Sommaire
	MainActivity.kt – Navigation avec Jetpack Compose
	SplashScreen.kt – Écran d’accueil animé
	SierraFlag.kt – Dessin du drapeau de la Sierra Leone
	FillBar.kt – Barre de progression personnalisée avec texte
	PuzzleFetcher.kt – Formulaire de récupération d’un puzzle
	Puzzle.kt – Représentation des données du puzzle
	JigsawPiece.kt – Composable pour afficher une pièce du puzzle
	Jigsaw.kt – Affichage de la grille de puzzle
	JigsawManager.kt – Logique et état du puzzle
	GameScreen.kt – Écran principal intégrant le puzzle
	Fichiers build.gradle – Configuration du projet pour Compose et Navigation
	build.gradle (Projet)
	build.gradle (Module app)

	Bonnes pratiques appliquées
	Conclusion

