
Tutoriel : Base de projet Android (Kotlin, Jetpack
Compose) pour une application de puzzles

Introduction

Ce tutoriel guide pas à pas la création d’une base de projet Android en Kotlin utilisant Jetpack Compose
pour développer une application de puzzles. Le contexte est un TP noté destiné à des débutants, et
nous allons couvrir les aspects demandés : structure du projet favorisant l’ajout de composants, écran
de démarrage (SplashScreen) affichant un drapeau spécifique, composant personnalisé de barre de
progression (FillBar), et plan de réalisation des principales fonctionnalités (SplashScreen, FillBar, écran
de jeu, etc.).

L’objectif est de fournir un guide clair et structuré, avec des extraits de code commentés et des bonnes
pratiques, afin que vous puissiez construire progressivement votre application de puzzles. Assurez-vous
d’avoir Android Studio (dans une version récente supportant Compose) installé.

1. Configuration du projet et structure recommandée

Avant d’implémenter les écrans et composants, configurons le projet Android pour Jetpack Compose et
réfléchissons à une structure de code propre. Cela facilitera l’ajout ultérieur de nouveaux composants et
fonctionnalités.

Étapes de configuration du projet :

Créer le projet Android: Dans Android Studio, créez un nouveau projet en choisissant le modèle
"Activité vide Compose" (Empty Compose Activity). Donnez-lui un nom (par ex. "PuzzleApp") et un
namespace (ex. com.example.puzzleapp). Assurez-vous que le langage est Kotlin et le SDK
minimum au moins 21 (Compose nécessite un SDK >= 21) .
Vérifier le build.gradle (Module: app): Si vous n’avez pas utilisé le template Compose, vous
devrez activer Compose manuellement dans Gradle. Dans le bloc android de votre module
app, activez Compose et configurez le compilateur Kotlin dédié :

android {

 ...

 buildFeatures {

 compose true // Active Jetpack Compose

 }

 composeOptions {

 kotlinCompilerExtensionVersion "1.4.7" // Version du Compiler Ext.

Jetpack Compose

 }

 ...

}

1.

1

2.

2

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://developer.android.com/develop/ui/compose/setup#:~:text=that%2C%20in%20the%20Language%20dropdown,Click%20Finish
https://developer.android.com/develop/ui/compose/setup#:~:text=android%20,

Dans la section dependencies , ajoutez les bibliothèques Jetpack Compose nécessaires. Il est
recommandé d’utiliser le BOM (Bill of Materials) de Compose pour gérer les versions de manière
cohérente . Par exemple :

dependencies {

 // BOM Compose pour aligner les versions

 implementation platform("androidx.compose:compose-bom:2025.05.00")

 // Dépendances Jetpack Compose principales

 implementation "androidx.compose.ui:ui" // UI de

base Compose

 implementation "androidx.compose.material3:material3" //

Composants Material Design 3

 implementation "androidx.activity:activity-compose:1.7.2" //

Intégration Activity <-> Compose

 implementation "androidx.navigation:navigation-compose:2.5.3"//

Navigation Compose pour gérer les écrans

 // (Ajoutez d'autres dépendances Compose si besoin, ex: ui-tooling,

icons, etc.)

}

Explication: le BOM Compose importe une version cohérente pour l’ensemble de la suite Compose (UI,
Material, etc.), évitant les incompatibilités de version. On importe ensuite les librairies nécessaires : ici
Material3 pour l’UI moderne, activity-compose pour lancer Compose dans une Activity, et navigation-
compose pour la gestion des écrans (navigation). 3. Configurer l’AndroidManifest et le thème: Ouvrez
le fichier AndroidManifest.xml et assurez-vous que l’activité principale y est déclarée. Par
exemple :

<application

android:allowBackup="true"

android:icon="@mipmap/ic_launcher"

android:roundIcon="@mipmap/ic_launcher_round"

android:supportsRtl="true"

android:theme="@style/Theme.PuzzleApp">

<activity android:name=".MainActivity"

android:exported="true"

android:theme="@style/Theme.PuzzleApp.NoActionBar">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

Ici, nous appliquons le thème de l’application à MainActivity . Le template Compose crée
généralement un thème Material3 (Theme.PuzzleApp) défini dans themes.xml et/ou dans du code
Kotlin (fichiers *Theme.kt générés). Le thème NoActionBar est utilisé pour cacher la barre
d’application par défaut, car nous utiliserons notre propre UI en Compose. 4. Structurer les packages
Kotlin: Pour un projet clair, créez des packages pour séparer les composantes. Par exemple, sous app/
src/main/java/com/example/puzzleapp/ : - ui/theme – contient les fichiers liés au thème

3

4

5

2

https://developer.android.com/develop/ui/compose/setup#:~:text=Groovy
https://developer.android.com/develop/ui/compose/setup#:~:text=%2F%2F%20Optional%20,compose%3A2.8.5
https://developer.android.com/develop/ui/compose/navigation#:~:text=dependencies%20,0

Compose (couleurs, typographie, thème MaterialTheme). - ui/screens – contient les écrans de
l’application sous forme de fonctions composables (SplashScreen, GameScreen, etc.). -
ui/components – contient les composants UI réutilisables comme la FillBar. - model ou data –

(optionnel) pour la logique du puzzle, structures de données, ViewModel, etc.

Cette organisation n’est pas strictement imposée, mais elle permet de s’y retrouver facilement et
d’ajouter de nouveaux composants dans des fichiers séparés de façon cohérente. Par exemple, on
pourra ajouter un nouvel écran en créant un fichier dans ui/screens sans tout mélanger dans
l’activité principale.

Intégrer la Navigation Compose (facultatif mais recommandé): Pour gérer plusieurs écrans
(SplashScreen, écran de jeu, écran de fin, etc.), il est pratique d’utiliser la bibliothèque Navigation
Compose. Elle permet de naviguer entre des composables en conservant un historique de
navigation. Nous l’avons ajoutée aux dépendances plus haut. Vous pouvez l’intégrer dans
MainActivity comme suit :

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContent {

PuzzleAppTheme { // Applique le thème Material3

val navController = rememberNavController()

NavHost(navController = navController, startDestination

= "splash") {

composable("splash") { SplashScreen(navController) }

composable("game") { GameScreen(navController) }

}

}

}

}

}

Explication: On crée un NavHost avec une route initiale "splash" (notre écran de
démarrage). Deux destinations sont définies : "splash" affiche SplashScreen et "game"
affiche GameScreen . Le navController permet de commander la navigation (nous
l’utiliserons par exemple pour aller du splash vers le jeu).

Si vous préférez éviter la navigation pour simplifier, vous pouvez gérer un état booléen dans
MainActivity pour afficher soit le splash soit l’écran principal. Cependant, adopter Navigation dès le

début est une bonne pratique pour structurer l’appli dès qu’il y a plus d’un écran.

Une fois ces étapes réalisées, votre projet est configuré pour Compose et prêt à accueillir les
fonctionnalités du TP puzzle.

2. Écran de démarrage (SplashScreen) avec le drapeau Sierra

La première étape du TP consiste à créer un SplashScreen qui s’affiche au lancement de l’application.
Cet écran doit montrer un drapeau correspondant à la lettre S (puisque l’utilisateur s’appelle "Seer").
En alphabet international des codes, la lettre S est représentée par le mot "Sierra" et correspond à un
pavillon maritime blanc avec un carré bleu central .

1.

6

3

https://en.wikipedia.org/wiki/International_maritime_signal_flags#:~:text=Distance%20%28range%29%20in%20nautical%20miles,velocity%29%20in%20knots

Le pavillon maritime "Sierra" (lettre S) consiste en un drapeau blanc à carré bleu central. Ce drapeau
correspond à l'initiale S du prénom "Seer" et sera affiché dans notre écran de démarrage
(SplashScreen). Ce choix apporte une touche ludique et personnalisée à l’application. Nous allons voir
comment intégrer cette image dans l’interface Compose.

Étapes pour implémenter le SplashScreen :

Ajouter l’image du drapeau dans le projet: Trouvez une image représentant le drapeau Sierra
(format PNG ou SVG). Vous pouvez par exemple créer un fichier flag_sierra.png
représentant un carré bleu sur fond blanc. Placez ce fichier dans le répertoire app/src/main/
res/drawable/ . Cela permettra d’y accéder via R.drawable.flag_sierra dans le code.
Créer le composable SplashScreen: Dans le package ui/screens , créez un fichier Kotlin
SplashScreen.kt . Définissez une fonction annotée @Composable nommée
SplashScreen . Cette fonction affichera l’image du drapeau, idéalement centrée sur l’écran.

Utilisons un conteneur Box pour centrer le contenu. Par exemple :

@Composable

fun SplashScreen(navController: NavController) {

// Occupy tout l'écran et centre le contenu

Box(

modifier = Modifier

.fillMaxSize()

.background(Color.White), // fond blanc (ou utilisez

MaterialTheme.colorScheme.background)

contentAlignment = Alignment.Center

) {

Image(

painter = painterResource(R.drawable.flag_sierra),

contentDescription = "Drapeau Sierra (lettre S)",

modifier = Modifier.size(200.dp) // dimension de l'image,

ajustez si besoin

)

}

// Après un délai, navigation vers l'écran principal

LaunchedEffect(Unit) {

delay(2000L) // attend 2 secondes

navController.navigate("game") {

popUpTo("splash") { inclusive = true }

}

}

}

Dans cet extrait de code, on:
Utilise Modifier.fillMaxSize() pour que le conteneur occupe tout l’écran, et
contentAlignment = Alignment.Center pour centrer l’image.

Affiche l’image du drapeau avec Image et un painterResource pointant vers notre
ressource flag_sierra . Le contentDescription est important pour l’accessibilité (décrire
l’image aux utilisateurs malvoyants).
Utilise LaunchedEffect(Unit) pour exécuter un effet de côté au lancement de ce
composable : ici une suspension de 2 secondes (delay(2000L)) puis la navigation vers l’écran

1.

2.

3.

4.

5.

4

de jeu "game" . Le paramètre Unit fait que cet effet ne s’exécute qu’une seule fois à l’entrée
dans la composition (un LaunchedEffect sans variable dépendante s’exécute une seule fois
lors de la première composition) .
Le popUpTo("splash"){ inclusive = true } permet de retirer l’écran splash de la
backstack de navigation, ainsi l’utilisateur ne revient pas dessus en appuyant "Back".
Configurer le thème du Splash (Optionnel avancé): Sur Android 12+, le système affiche
automatiquement un écran de lancement. Pour un résultat plus fluide, vous pourriez configurer
le thème de lancement (Theme.PuzzleApp.Splash) avec l’image du drapeau en background,
via le style windowBackground . Cependant, cette approche utilise XML et le Android
SplashScreen API. Pour notre cas simplifié en Compose, le code ci-dessus suffit car il affiche
rapidement l’image. Assurez-vous juste que le fond de l’activité (thème) est blanc pour éviter un
flash noir au démarrage.
Tester le SplashScreen: Exécutez l’application. Vous devriez voir apparaître le drapeau Sierra
pendant 2 secondes, puis la navigation se fait vers l’écran suivant (que nous appellerons l’écran
de jeu, même s’il est vide pour l’instant). Si cela ne fonctionne pas, vérifiez que:
Le NavHost dans MainActivity utilise bien "splash" en startDestination et que
SplashScreen(navController) y est intégré.

L’image est correctement référencée (pas d’erreur de ressource manquante).
Vous avez importé les fonctions nécessaires (rememberNavController , painterResource ,
etc.).

👉 Bonnes pratiques: Même pour un écran simple, on sépare la logique (ici la temporisation et
navigation) de la définition visuelle. Nous utilisons Compose Navigation pour la transition d’écran plutôt
qu’un Handler.postDelayed classique, ce qui rend le code déclaratif et propre. De plus, nous
respectons l’accessibilité en fournissant un contentDescription à l’image, et nous maintenons le code UI
réactif (si plus tard on voulait conditionner la durée ou skipper le splash, il suffirait de modifier le
LaunchedEffect ou la navigation).

3. Composant barre de progression (FillBar)

La deuxième partie du TP porte sur la création d’une barre de progression personnalisée, appelée
FillBar. L’idée est de fournir un indicateur visuel de progression, par exemple le pourcentage de puzzle
complété ou le score. Nous allons créer ce composant en Compose afin de comprendre sa construction,
bien que Jetpack Compose offre déjà des composants de progression (LinearProgressIndicator,
CircularProgressIndicator) .

Notre FillBar sera une barre horizontale dont la portion remplie représente un pourcentage. Pour un
débutant, cela exercera la gestion de layout basique et l’utilisation de paramètres Composables.

Étapes pour créer le composant FillBar :

Définir le composable FillBar: Dans un fichier ui/components/FillBar.kt , créez une
fonction @Composable fun FillBar(progress: Float) . Le paramètre progress
représentera le niveau de remplissage entre 0.0 et 1.0 (0% à 100%). C’est la convention
également utilisée par les composants de progression Material . Vous pouvez ajouter d’autres
paramètres optionnels, par exemple la couleur de la barre ou sa taille, avec des valeurs par
défaut.
Construire la vue de la FillBar: Pour dessiner la barre, on peut imbriquer deux Box . La Box
parent servira de fond (la "track" en gris clair), et la Box enfant à l’intérieur aura une largeur
proportionnelle à progress pour représenter la partie remplie. Par exemple :

7

6.

7.

8.

9.

10.
11.

8

1.

9

2.

5

https://dimovski-d.medium.com/splash-screen-with-jetpack-compose-side-effects-in-compose-how-to-use-them-2a90eb6e1d34#:~:text=As%20explained%20earlier%2C%20,part%20of%20a%20conditional%20statement
https://developer.android.com/develop/ui/compose/components/progress#:~:text=,which%20the%20indicator%20is%20drawn
https://developer.android.com/develop/ui/compose/components/progress#:~:text=,which%20the%20indicator%20is%20drawn

@Composable

fun FillBar(progress: Float, modifier: Modifier = Modifier, color:

Color = MaterialTheme.colorScheme.primary) {

// Constrain progress between 0f and 1f

val clampedProgress = progress.coerceIn(0f, 1f)

Box(

modifier = modifier

.fillMaxWidth()

.height(20.dp)

.background(MaterialTheme.colorScheme.surfaceVariant, shape

= RoundedCornerShape(50)) // fond arrondi

) {

Box(

modifier = Modifier

.fillMaxWidth(fraction = clampedProgress) // largeur

proportionnelle

.fillMaxHeight()

.background(color, shape = RoundedCornerShape(50)) //

partie remplie colorée

)

}

}

Explication: On utilise fillMaxWidth(fraction = progress) pour que la largeur du second
Box soit un pourcentage de la largeur totale du composant parent. Le fond utilise
surfaceVariant du thème Material3 pour un gris clair, et la barre remplie utilise la couleur

primaire du thème (on aurait pu paramétrer la couleur). On ajoute RoundedCornerShape(50)
pour arrondir la barre (50% de hauteur, donc bords arrondis type "capsule").
On veille à clamping la valeur de progress entre 0 et 1 pour éviter les débordements (par
exemple si on passe 1.2 ou -0.5 par erreur).
Utiliser/Prévisualiser le composant: Vous pouvez ajouter une fonction @Preview pour voir le
rendu de la FillBar. Par exemple :

@Preview(showBackground = true)

@Composable

fun FillBarPreview() {

Column(modifier = Modifier.padding(16.dp)) {

Text("Progression du puzzle : 75%")

FillBar(progress = 0.75f, modifier = Modifier.padding(vertical

= 8.dp))

}

}

L’aperçu devrait montrer une barre remplie aux trois quarts en bleu (couleur primaire par
défaut). N’hésitez pas à ajuster la hauteur, la couleur ou ajouter une bordure si souhaité.
Intégrer la FillBar dans l’écran de jeu: Une fois le composant disponible, placez-le dans l’UI de
votre écran principal (GameScreen). Par exemple, on peut le mettre en haut d’écran pour
indiquer la progression du joueur. Vous passerez en paramètre le pourcentage de progression

3.

4.

6

calculé. Au début du jeu, ce sera peut-être 0%, et cela augmentera au fur et à mesure que le
puzzle se résout.
Lier la progression à l’état du puzzle: Pour rendre la FillBar dynamique, liez son progress à
un état MutableState ou à un état dans un ViewModel représentant la progression. Par
exemple, si vous suivez combien de pièces du puzzle sont bien placées, calculez progress =
piecesBienPlacees.toFloat() / totalPieces . Mettez à jour cet état à chaque coup de
l’utilisateur pour que la barre se recompose automatiquement. Compose rendra la barre plus
remplie grâce au binding de l’état.
Bonne pratique: Vous pourriez animer la progression pour un rendu plus fluide. Jetpack Compose
propose animateFloatAsState pour animer la valeur flottante de progression
automatiquement lorsque celle-ci change. Cela donnera un effet de remplissage progressif
plutôt qu’un changement brusque.

👉 Remarque: Il est tout à fait possible d’utiliser directement LinearProgressIndicator de
Material à la place de créer FillBar. Par exemple, LinearProgressIndicator(progress =

progress, color = ..., trackColor = ...) fournit déjà une barre prête à l’emploi conforme
aux guides Material Design. Cependant, l’exercice de coder FillBar vous fait pratiquer la composition de
bases (Box imbriqués) et la gestion de paramètres. À l’avenir, pour des besoins standards, n’hésitez pas
à utiliser les composants existants qui intègrent déjà les bonnes pratiques Material.

4. Écran principal du puzzle (GameScreen) et logique de jeu

Passons à l’écran de jeu lui-même. Cette partie du TP vous demande sans doute de créer l’interface du
puzzle et d’y intégrer la logique (par exemple, mélanger les pièces, gérer les interactions du joueur,
détecter la fin du puzzle). Nous allons proposer une progression logique pour construire cet écran pas à
pas, en se concentrant d’abord sur l’UI puis en évoquant la gestion d’état.

Étapes pour construire l’écran de puzzle (GameScreen) :

Déterminer la représentation du puzzle: Choisissez comment représenter les données du
puzzle en Kotlin. Par exemple, pour un puzzle de taquin (15-puzzle, 4x4 avec une case vide) vous
pouvez utiliser une liste de 16 entiers de 0 à 15, où 0 représente la case vide. Pour un puzzle de
type image découpée, cela pourrait être une grille de tuiles.
Définissez une variable d’état qui contiendra ce jeu de données. Le plus simple est d’utiliser un
remember dans le composable (ou idéalement un ViewModel pour séparer UI et données).

Par exemple :

val puzzleState = remember { mutableStateOf(listOf(1, 2, 3, ..., 15,

0)) }

Ici, on initialise l’état avec la liste ordonnée (pièce 1 à 15 et 0 pour vide à la fin). Plus tard, on
écrira une fonction pour mélanger (shuffle) cette liste au début de la partie.
Construire l’UI des pièces: Utilisez des composables de disposition pour afficher la grille du
puzzle. Vous pouvez soit utiliser un GridLayout via LazyVerticalGrid (Compose
Foundation), soit plus simplement une colonne de lignes vu que la taille est fixe (4x4 par
exemple). Pour chaque case, affichez un composant visuel (une carte, un bouton, etc.) avec le
contenu approprié (numéro ou image de la pièce).
Si la case représente la pièce vide (par ex. valeur 0), on peut afficher un carré vide (transparent)
pour matérialiser l’espace.

5.

6.

1.

2.

3.

7

Sinon, affichez un Card ou Box avec un texte (le numéro) au centre. Ajoutez un style visuel
(couleur de fond, bordure) pour ressembler à une pièce de puzzle.
Exemple simplifié pour un puzzle 4x4 de chiffres :

@Composable

fun GameBoard(tiles: List<Int>, onTileClick: (Int) -> Unit) {

Column {

// 4 lignes

for (i in 0 until 4) {

Row {

// 4 colonnes

for (j in 0 until 4) {

val index = 4 * i + j

val value = tiles[index]

if (value != 0) {

// Tuile non vide

Box(

modifier = Modifier

.size(80.dp)

.padding(4.dp)

.background(MaterialTheme.colorScheme.primaryContainer,

RoundedCornerShape(8.dp))

.clickable { onTileClick(index) }, //

action sur clic

contentAlignment = Alignment.Center

) {

Text(

text = value.toString(),

style =

MaterialTheme.typography.headlineMedium,

color =

MaterialTheme.colorScheme.onPrimaryContainer

)

}

} else {

// Case vide

Box(modifier =

Modifier.size(80.dp).padding(4.dp)) { /* empty */ }

}

}

}

}

}

}

Explication: On parcourt la liste de tuiles pour en afficher une grille 4x4. Chaque tuile non vide est
affichée comme un carré cliquable avec un texte. On utilise le thème Material3 pour les couleurs
(primaryContainer pour la tuile, onPrimaryContainer pour le texte) afin de respecter la
cohérence visuelle de l’application. La case vide est juste un espace vide pour conserver
l’alignement.

4.

8

Le paramètre onTileClick permettra de notifier lorsqu’une tuile est cliquée (voir étape
suivante).
Gérer les interactions (mouvements du puzzle): Maintenant, implémentez la logique lorsque
l’utilisateur clique sur une tuile. Dans un puzzle glissant, cliquer une tuile adjacente à la case vide
doit l’échanger avec le vide (pour la déplacer). Vous pouvez implémenter la fonction
onTileClick(index: Int) dans GameScreen . Cette fonction vérifiera si la tuile cliquée est

déplaçable (adjacente au 0). Si oui, permute sa position avec le 0 dans la liste d’état du puzzle.
Pour trouver le voisinage, calculer l’index du 0 dans la liste (emptyIndex =
tiles.indexOf(0)). Comparer avec l’index cliqué : il est déplaçable si c’est la case directement
au-dessus, en dessous, à gauche ou à droite. En indices, cela veut dire soit index ==
emptyIndex ± 1 dans la même ligne, soit index == emptyIndex ± 4 (au-dessus ou en
dessous).
Si déplaçable, faites une copie mutable de la liste d’état, échangez les deux éléments, puis faites
puzzleState.value = nouvelleListe . Grâce à Compose, le UI se mettra à jour

automatiquement pour refléter la nouvelle configuration.
Utiliser la FillBar pour indiquer la progression: À chaque mise à jour de l’état du puzzle,
recalculer le pourcentage de complétion. Par exemple, comptez combien de pièces sont à la
bonne place. Dans le puzzle de taquin, on peut dire qu’une pièce est à sa place si la valeur ==
index+1 (sauf la dernière case qui est le vide). Calculez progress =
nombre_de_pieces_bien_placees / 15f (15 pièces à placer). Mettez à jour un état
progressState de type Float et passez-le à votre composant
FillBar(progressState) . Ainsi, la barre se remplira au fur et à mesure que le puzzle se

rapproche de la solution.
Détecter la fin du puzzle: Vous devriez aussi vérifier après chaque mouvement si le puzzle est
résolu (par exemple si la liste est dans l’ordre 1,2,...,15,0). Si oui, vous pouvez :
Afficher un message de félicitations (un simple Text ou un Dialog Compose).
Naviguer vers un écran de fin/victoire si vous avez prévu un autre écran (ex:
navController.navigate("victory")).

Réinitialiser ou proposer de rejouer.

Pour rester dans l’esprit du TP, afficher un message ou changer visuellement l’écran (feux d’artifice en
ASCII ou autre) peut suffire. Vous pouvez utiliser un état boolean isFinished pour conditionner
l’affichage de ce message ou la navigation. 6. Composer GameScreen avec les éléments: Assemblons
maintenant dans le composable GameScreen les différentes parties : la barre de progression en haut,
la grille du puzzle, et éventuellement des éléments d’UI supplémentaires (bouton "Recommencer",
compteur de coups, etc. si désiré). Par exemple :

@Composable

fun GameScreen(navController: NavController) {

// Etats du puzzle

var tiles by remember { mutableStateOf(shuffledTiles()) } // liste

mélangée de tuiles au démarrage

var movesCount by remember { mutableStateOf(0) }

// Calcul de progression (dans [0,1])

val progress = remember(tiles) {

calculateCompletionPercent(tiles) // ex: renvoie un Float entre 0f et 1f

}

Column(modifier = Modifier.fillMaxSize().padding(16.dp)) {

5.

6.

7.

8.

9.

10.
11.

12.

9

// Barre de progression en haut

Text(text = "Progression : ${(progress * 100).toInt()}%", style =

MaterialTheme.typography.titleMedium)

FillBar(progress = progress, modifier = Modifier.padding(vertical =

8.dp))

// Grille du puzzle

GameBoard(tiles = tiles) { clickedIndex ->

// Logique de déplacement

val emptyIndex = tiles.indexOf(0)

if (isAdjacent(clickedIndex, emptyIndex)) {

tiles = tiles.toMutableList().also {

it[emptyIndex] = tiles[clickedIndex]

it[clickedIndex] = 0

}

movesCount += 1

}

// Vérifier si terminé

if (isPuzzleSolved(tiles)) {

// Exemple: affichage d'un message de victoire

Toast.makeText(LocalContext.current, "Puzzle résolu en

$movesCount coups!", Toast.LENGTH_LONG).show()

// ou navigation vers un autre écran de fin, etc.

}

}

}

}

Dans ce code: - shuffledTiles() serait une fonction utilitaire qui génère une liste 1-15,0 mélangée
de façon solvable (pour un vrai taquin, il faut une permutation paire). -
calculateCompletionPercent(tiles) calcule le pourcentage de pièces bien placées. -
isAdjacent(a, b) vérifie si deux index de la liste sont voisins sur la grille (à implémenter selon les

dimensions). - isPuzzleSolved(tiles) renvoie vrai si la liste est dans l’ordre de victoire.

Le GameBoard est appelé avec la liste courante et une lambda sur clic. À chaque clic valide, on met à
jour la liste tiles (ce qui déclenche la recomposition de GameBoard et de FillBar via Compose
car on a utilisé des états remember). On incrémente aussi un compteur de mouvements
movesCount (juste informatif). Enfin, si le puzzle est terminé, on présente un feedback (ici un Toast

pour faire simple, mais on pourrait mettre un Text visible conditionnellement dans la colonne, ou
naviguer ailleurs).

Tester l’application complète: Compilez et exécutez. Vous devriez voir le SplashScreen, puis
l’écran de puzzle avec la barre de progression à 0% (ou très bas) et la grille mélangée. En cliquant
sur les tuiles, elles se déplacent si la logique est correcte, la barre de progression augmente petit
à petit, et le pourcentage affiché aussi. En fin de puzzle, le message de victoire apparaît.
Si quelque chose ne fonctionne pas, utilisez Android Studio Debugger ou des logs (Log.d)
pour inspecter l’état des listes lors des clics. Vérifiez particulièrement la logique d’adjacence et la
recomposition de l’état (le puzzle ne se mettrait pas à jour si vous n’avez pas utilisé un type
mutable observé par Compose, d’où l’utilisation de
by remember { mutableStateOf(...) } qui délègue à un MutableState).

1.

10

👉 Bonnes pratiques architecture: Pour un vrai projet, la logique du puzzle (mélange, déplacements,
condition de victoire) devrait idéalement résider dans un ViewModel (du package androidx.lifecycle) et
non dans le composable directement. Le composable GameScreen se contenterait d’observer l’état
exposé par le ViewModel (via des MutableStateFlow ou LiveData) et d’appeler des méthodes du
ViewModel pour les actions (comme déplacer une tuile). Cela rend le code plus testable et maintenable.
Étant donné qu’il s’agit d’un TP pour débutant, vous pouvez gérer l’état localement comme on l’a fait
pour comprendre le fonctionnement de Compose, mais ayez conscience qu’on tend vers une séparation
UI/Logique pour des applications plus complexes.

Conclusion

En suivant ce tutoriel, vous avez créé une base de projet Android moderne en Kotlin et Jetpack Compose
pour une application de puzzles, comprenant : un SplashScreen personnalisé affichant un drapeau lié à
la lettre S, un composant FillBar pour indiquer la progression, et une esquisse d’écran de jeu avec une
grille de puzzle interactive. Tout au long du chemin, nous avons appliqué de bonnes pratiques : -
Structuration du code en fichiers et packages clairs (séparation des écrans, composants, thème, etc.). -
Utilisation de Jetpack Compose pour construire l’UI de manière déclarative et réactive, en profitant de
sa gestion de l’état (@Composable, remember, mutableStateOf). - Adoption de composants Material3
(thème, couleurs) et attention à l’accessibilité (contentDescription). - Introduction de la Navigation
Compose pour gérer les écrans de l’application de façon propre. - Ajout de commentaires et
d’explications dans le code pour faciliter la compréhension, ce qui est essentiel en contexte
pédagogique.

N’hésitez pas à faire évoluer cette base de projet. Par exemple, vous pouvez ajouter un écran d’accueil
avec menu, un sélecteur de niveau de puzzle, ou améliorer la convivialité (animations, sons, etc.). Avec
Jetpack Compose, vous avez un outil puissant pour créer des interfaces utilisateur richement et plus
facilement qu’avec les layouts traditionnels Android. Bonne continuation dans vos puzzles et bon code !

Sources : Pour aller plus loin avec Jetpack Compose, vous pouvez consulter la documentation officielle
Android (en particulier sur la configuration de Compose dans Gradle et la navigation Compose

), ainsi que les guides sur les composants Material (ex. indicateurs de progression). Ces
ressources vous aideront à approfondir les bonnes pratiques que nous avons effleurées dans ce
tutoriel. Bon développement !

Quick start | Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/setup

Navigation with Compose | Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/navigation

International maritime signal flags - Wikipedia
https://en.wikipedia.org/wiki/International_maritime_signal_flags

Splash Screen with Jetpack Compose: Side-Effects & How to Use Them | by Daniel Dimovski |
Medium
https://dimovski-d.medium.com/splash-screen-with-jetpack-compose-side-effects-in-compose-how-to-use-
them-2a90eb6e1d34

Progress indicators | Jetpack Compose | Android Developers
https://developer.android.com/develop/ui/compose/components/progress

2 3

5 8

1 2 3 4

5

6

7

8 9

11

https://developer.android.com/develop/ui/compose/setup
https://developer.android.com/develop/ui/compose/setup#:~:text=android%20,
https://developer.android.com/develop/ui/compose/setup#:~:text=Groovy
https://developer.android.com/develop/ui/compose/navigation
https://developer.android.com/develop/ui/compose/navigation#:~:text=dependencies%20,0
https://developer.android.com/develop/ui/compose/components/progress#:~:text=,which%20the%20indicator%20is%20drawn
https://developer.android.com/develop/ui/compose/setup#:~:text=that%2C%20in%20the%20Language%20dropdown,Click%20Finish
https://developer.android.com/develop/ui/compose/setup#:~:text=android%20,
https://developer.android.com/develop/ui/compose/setup#:~:text=Groovy
https://developer.android.com/develop/ui/compose/setup#:~:text=%2F%2F%20Optional%20,compose%3A2.8.5
https://developer.android.com/develop/ui/compose/setup
https://developer.android.com/develop/ui/compose/navigation#:~:text=dependencies%20,0
https://developer.android.com/develop/ui/compose/navigation
https://en.wikipedia.org/wiki/International_maritime_signal_flags#:~:text=Distance%20%28range%29%20in%20nautical%20miles,velocity%29%20in%20knots
https://en.wikipedia.org/wiki/International_maritime_signal_flags
https://dimovski-d.medium.com/splash-screen-with-jetpack-compose-side-effects-in-compose-how-to-use-them-2a90eb6e1d34#:~:text=As%20explained%20earlier%2C%20,part%20of%20a%20conditional%20statement
https://dimovski-d.medium.com/splash-screen-with-jetpack-compose-side-effects-in-compose-how-to-use-them-2a90eb6e1d34
https://dimovski-d.medium.com/splash-screen-with-jetpack-compose-side-effects-in-compose-how-to-use-them-2a90eb6e1d34
https://developer.android.com/develop/ui/compose/components/progress#:~:text=,which%20the%20indicator%20is%20drawn
https://developer.android.com/develop/ui/compose/components/progress#:~:text=,which%20the%20indicator%20is%20drawn
https://developer.android.com/develop/ui/compose/components/progress

	Tutoriel : Base de projet Android (Kotlin, Jetpack Compose) pour une application de puzzles
	Introduction
	1. Configuration du projet et structure recommandée
	2. Écran de démarrage (SplashScreen) avec le drapeau Sierra
	3. Composant barre de progression (FillBar)
	4. Écran principal du puzzle (GameScreen) et logique de jeu
	Conclusion

